| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 2 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | nngt0 | ⊢ ( 𝐵  ∈  ℕ  →  0  <  𝐵 ) | 
						
							| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  0  <  𝐵 ) | 
						
							| 7 | 5 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ )  →  0  <  𝐵 ) | 
						
							| 8 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 9 |  | lttr | ⊢ ( ( 0  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 0  <  𝐵  ∧  𝐵  <  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 10 | 8 9 | mp3an1 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 0  <  𝐵  ∧  𝐵  <  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 11 | 2 10 | sylan | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℝ )  →  ( ( 0  <  𝐵  ∧  𝐵  <  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 12 | 11 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ )  →  ( ( 0  <  𝐵  ∧  𝐵  <  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 13 | 7 12 | mpand | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ )  →  ( 𝐵  <  𝐴  →  0  <  𝐴 ) ) | 
						
							| 14 | 13 | 3impia | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 15 | 3 4 6 14 | divgt0d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  0  <  ( 𝐵  /  𝐴 ) ) | 
						
							| 16 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  𝐵  <  𝐴 ) | 
						
							| 17 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 18 |  | ltdivmul2 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( 𝐵  /  𝐴 )  <  1  ↔  𝐵  <  ( 1  ·  𝐴 ) ) ) | 
						
							| 19 | 17 18 | mp3an2 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( 𝐵  /  𝐴 )  <  1  ↔  𝐵  <  ( 1  ·  𝐴 ) ) ) | 
						
							| 20 | 3 4 14 19 | syl12anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  ( ( 𝐵  /  𝐴 )  <  1  ↔  𝐵  <  ( 1  ·  𝐴 ) ) ) | 
						
							| 21 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 22 | 21 | mullidd | ⊢ ( 𝐴  ∈  ℝ  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 23 | 22 | breq2d | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐵  <  ( 1  ·  𝐴 )  ↔  𝐵  <  𝐴 ) ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  ( 𝐵  <  ( 1  ·  𝐴 )  ↔  𝐵  <  𝐴 ) ) | 
						
							| 25 | 20 24 | bitrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  ( ( 𝐵  /  𝐴 )  <  1  ↔  𝐵  <  𝐴 ) ) | 
						
							| 26 | 16 25 | mpbird | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  ( 𝐵  /  𝐴 )  <  1 ) | 
						
							| 27 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 28 | 26 27 | breqtrrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  ( 𝐵  /  𝐴 )  <  ( 0  +  1 ) ) | 
						
							| 29 |  | btwnnz | ⊢ ( ( 0  ∈  ℤ  ∧  0  <  ( 𝐵  /  𝐴 )  ∧  ( 𝐵  /  𝐴 )  <  ( 0  +  1 ) )  →  ¬  ( 𝐵  /  𝐴 )  ∈  ℤ ) | 
						
							| 30 | 1 15 28 29 | mp3an2i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℕ  ∧  𝐵  <  𝐴 )  →  ¬  ( 𝐵  /  𝐴 )  ∈  ℤ ) |