Metamath Proof Explorer


Theorem cardmin

Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003) (Revised by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion cardmin A V card x On | A x = x On | A x

Proof

Step Hyp Ref Expression
1 numthcor A V x On A x
2 onintrab2 x On A x x On | A x On
3 1 2 sylib A V x On | A x On
4 onelon x On | A x On y x On | A x y On
5 4 ex x On | A x On y x On | A x y On
6 3 5 syl A V y x On | A x y On
7 breq2 x = y A x A y
8 7 onnminsb y On y x On | A x ¬ A y
9 6 8 syli A V y x On | A x ¬ A y
10 vex y V
11 domtri y V A V y A ¬ A y
12 10 11 mpan A V y A ¬ A y
13 9 12 sylibrd A V y x On | A x y A
14 nfcv _ x A
15 nfcv _ x
16 nfrab1 _ x x On | A x
17 16 nfint _ x x On | A x
18 14 15 17 nfbr x A x On | A x
19 breq2 x = x On | A x A x A x On | A x
20 18 19 onminsb x On A x A x On | A x
21 1 20 syl A V A x On | A x
22 13 21 jctird A V y x On | A x y A A x On | A x
23 domsdomtr y A A x On | A x y x On | A x
24 22 23 syl6 A V y x On | A x y x On | A x
25 24 ralrimiv A V y x On | A x y x On | A x
26 iscard card x On | A x = x On | A x x On | A x On y x On | A x y x On | A x
27 3 25 26 sylanbrc A V card x On | A x = x On | A x