Step |
Hyp |
Ref |
Expression |
1 |
|
numthcor |
|- ( A e. V -> E. x e. On A ~< x ) |
2 |
|
onintrab2 |
|- ( E. x e. On A ~< x <-> |^| { x e. On | A ~< x } e. On ) |
3 |
1 2
|
sylib |
|- ( A e. V -> |^| { x e. On | A ~< x } e. On ) |
4 |
|
onelon |
|- ( ( |^| { x e. On | A ~< x } e. On /\ y e. |^| { x e. On | A ~< x } ) -> y e. On ) |
5 |
4
|
ex |
|- ( |^| { x e. On | A ~< x } e. On -> ( y e. |^| { x e. On | A ~< x } -> y e. On ) ) |
6 |
3 5
|
syl |
|- ( A e. V -> ( y e. |^| { x e. On | A ~< x } -> y e. On ) ) |
7 |
|
breq2 |
|- ( x = y -> ( A ~< x <-> A ~< y ) ) |
8 |
7
|
onnminsb |
|- ( y e. On -> ( y e. |^| { x e. On | A ~< x } -> -. A ~< y ) ) |
9 |
6 8
|
syli |
|- ( A e. V -> ( y e. |^| { x e. On | A ~< x } -> -. A ~< y ) ) |
10 |
|
vex |
|- y e. _V |
11 |
|
domtri |
|- ( ( y e. _V /\ A e. V ) -> ( y ~<_ A <-> -. A ~< y ) ) |
12 |
10 11
|
mpan |
|- ( A e. V -> ( y ~<_ A <-> -. A ~< y ) ) |
13 |
9 12
|
sylibrd |
|- ( A e. V -> ( y e. |^| { x e. On | A ~< x } -> y ~<_ A ) ) |
14 |
|
nfcv |
|- F/_ x A |
15 |
|
nfcv |
|- F/_ x ~< |
16 |
|
nfrab1 |
|- F/_ x { x e. On | A ~< x } |
17 |
16
|
nfint |
|- F/_ x |^| { x e. On | A ~< x } |
18 |
14 15 17
|
nfbr |
|- F/ x A ~< |^| { x e. On | A ~< x } |
19 |
|
breq2 |
|- ( x = |^| { x e. On | A ~< x } -> ( A ~< x <-> A ~< |^| { x e. On | A ~< x } ) ) |
20 |
18 19
|
onminsb |
|- ( E. x e. On A ~< x -> A ~< |^| { x e. On | A ~< x } ) |
21 |
1 20
|
syl |
|- ( A e. V -> A ~< |^| { x e. On | A ~< x } ) |
22 |
13 21
|
jctird |
|- ( A e. V -> ( y e. |^| { x e. On | A ~< x } -> ( y ~<_ A /\ A ~< |^| { x e. On | A ~< x } ) ) ) |
23 |
|
domsdomtr |
|- ( ( y ~<_ A /\ A ~< |^| { x e. On | A ~< x } ) -> y ~< |^| { x e. On | A ~< x } ) |
24 |
22 23
|
syl6 |
|- ( A e. V -> ( y e. |^| { x e. On | A ~< x } -> y ~< |^| { x e. On | A ~< x } ) ) |
25 |
24
|
ralrimiv |
|- ( A e. V -> A. y e. |^| { x e. On | A ~< x } y ~< |^| { x e. On | A ~< x } ) |
26 |
|
iscard |
|- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } <-> ( |^| { x e. On | A ~< x } e. On /\ A. y e. |^| { x e. On | A ~< x } y ~< |^| { x e. On | A ~< x } ) ) |
27 |
3 25 26
|
sylanbrc |
|- ( A e. V -> ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } ) |