Metamath Proof Explorer


Theorem cardmin

Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003) (Revised by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion cardmin ( 𝐴𝑉 → ( card ‘ { 𝑥 ∈ On ∣ 𝐴𝑥 } ) = { 𝑥 ∈ On ∣ 𝐴𝑥 } )

Proof

Step Hyp Ref Expression
1 numthcor ( 𝐴𝑉 → ∃ 𝑥 ∈ On 𝐴𝑥 )
2 onintrab2 ( ∃ 𝑥 ∈ On 𝐴𝑥 { 𝑥 ∈ On ∣ 𝐴𝑥 } ∈ On )
3 1 2 sylib ( 𝐴𝑉 { 𝑥 ∈ On ∣ 𝐴𝑥 } ∈ On )
4 onelon ( ( { 𝑥 ∈ On ∣ 𝐴𝑥 } ∈ On ∧ 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } ) → 𝑦 ∈ On )
5 4 ex ( { 𝑥 ∈ On ∣ 𝐴𝑥 } ∈ On → ( 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } → 𝑦 ∈ On ) )
6 3 5 syl ( 𝐴𝑉 → ( 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } → 𝑦 ∈ On ) )
7 breq2 ( 𝑥 = 𝑦 → ( 𝐴𝑥𝐴𝑦 ) )
8 7 onnminsb ( 𝑦 ∈ On → ( 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } → ¬ 𝐴𝑦 ) )
9 6 8 syli ( 𝐴𝑉 → ( 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } → ¬ 𝐴𝑦 ) )
10 vex 𝑦 ∈ V
11 domtri ( ( 𝑦 ∈ V ∧ 𝐴𝑉 ) → ( 𝑦𝐴 ↔ ¬ 𝐴𝑦 ) )
12 10 11 mpan ( 𝐴𝑉 → ( 𝑦𝐴 ↔ ¬ 𝐴𝑦 ) )
13 9 12 sylibrd ( 𝐴𝑉 → ( 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } → 𝑦𝐴 ) )
14 nfcv 𝑥 𝐴
15 nfcv 𝑥
16 nfrab1 𝑥 { 𝑥 ∈ On ∣ 𝐴𝑥 }
17 16 nfint 𝑥 { 𝑥 ∈ On ∣ 𝐴𝑥 }
18 14 15 17 nfbr 𝑥 𝐴 { 𝑥 ∈ On ∣ 𝐴𝑥 }
19 breq2 ( 𝑥 = { 𝑥 ∈ On ∣ 𝐴𝑥 } → ( 𝐴𝑥𝐴 { 𝑥 ∈ On ∣ 𝐴𝑥 } ) )
20 18 19 onminsb ( ∃ 𝑥 ∈ On 𝐴𝑥𝐴 { 𝑥 ∈ On ∣ 𝐴𝑥 } )
21 1 20 syl ( 𝐴𝑉𝐴 { 𝑥 ∈ On ∣ 𝐴𝑥 } )
22 13 21 jctird ( 𝐴𝑉 → ( 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } → ( 𝑦𝐴𝐴 { 𝑥 ∈ On ∣ 𝐴𝑥 } ) ) )
23 domsdomtr ( ( 𝑦𝐴𝐴 { 𝑥 ∈ On ∣ 𝐴𝑥 } ) → 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } )
24 22 23 syl6 ( 𝐴𝑉 → ( 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } → 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } ) )
25 24 ralrimiv ( 𝐴𝑉 → ∀ 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } )
26 iscard ( ( card ‘ { 𝑥 ∈ On ∣ 𝐴𝑥 } ) = { 𝑥 ∈ On ∣ 𝐴𝑥 } ↔ ( { 𝑥 ∈ On ∣ 𝐴𝑥 } ∈ On ∧ ∀ 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } 𝑦 { 𝑥 ∈ On ∣ 𝐴𝑥 } ) )
27 3 25 26 sylanbrc ( 𝐴𝑉 → ( card ‘ { 𝑥 ∈ On ∣ 𝐴𝑥 } ) = { 𝑥 ∈ On ∣ 𝐴𝑥 } )