Metamath Proof Explorer


Theorem catcbas

Description: Set of objects of the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcbas.c C=CatCatU
catcbas.b B=BaseC
catcbas.u φUV
Assertion catcbas φB=UCat

Proof

Step Hyp Ref Expression
1 catcbas.c C=CatCatU
2 catcbas.b B=BaseC
3 catcbas.u φUV
4 eqidd φUCat=UCat
5 eqidd φxUCat,yUCatxFuncy=xUCat,yUCatxFuncy
6 eqidd φvUCat×UCat,zUCatg2ndvFuncz,fFuncvgfuncf=vUCat×UCat,zUCatg2ndvFuncz,fFuncvgfuncf
7 1 3 4 5 6 catcval φC=BasendxUCatHomndxxUCat,yUCatxFuncycompndxvUCat×UCat,zUCatg2ndvFuncz,fFuncvgfuncf
8 catstr BasendxUCatHomndxxUCat,yUCatxFuncycompndxvUCat×UCat,zUCatg2ndvFuncz,fFuncvgfuncfStruct115
9 baseid Base=SlotBasendx
10 snsstp1 BasendxUCatBasendxUCatHomndxxUCat,yUCatxFuncycompndxvUCat×UCat,zUCatg2ndvFuncz,fFuncvgfuncf
11 inex1g UVUCatV
12 3 11 syl φUCatV
13 7 8 9 10 12 2 strfv3 φB=UCat