Metamath Proof Explorer


Theorem catchomfval

Description: Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcbas.c C=CatCatU
catcbas.b B=BaseC
catcbas.u φUV
catchomfval.h H=HomC
Assertion catchomfval φH=xB,yBxFuncy

Proof

Step Hyp Ref Expression
1 catcbas.c C=CatCatU
2 catcbas.b B=BaseC
3 catcbas.u φUV
4 catchomfval.h H=HomC
5 1 2 3 catcbas φB=UCat
6 eqidd φxB,yBxFuncy=xB,yBxFuncy
7 eqidd φvB×B,zBg2ndvFuncz,fFuncvgfuncf=vB×B,zBg2ndvFuncz,fFuncvgfuncf
8 1 3 5 6 7 catcval φC=BasendxBHomndxxB,yBxFuncycompndxvB×B,zBg2ndvFuncz,fFuncvgfuncf
9 8 fveq2d φHomC=HomBasendxBHomndxxB,yBxFuncycompndxvB×B,zBg2ndvFuncz,fFuncvgfuncf
10 4 9 eqtrid φH=HomBasendxBHomndxxB,yBxFuncycompndxvB×B,zBg2ndvFuncz,fFuncvgfuncf
11 2 fvexi BV
12 11 11 mpoex xB,yBxFuncyV
13 catstr BasendxBHomndxxB,yBxFuncycompndxvB×B,zBg2ndvFuncz,fFuncvgfuncfStruct115
14 homid Hom=SlotHomndx
15 snsstp2 HomndxxB,yBxFuncyBasendxBHomndxxB,yBxFuncycompndxvB×B,zBg2ndvFuncz,fFuncvgfuncf
16 13 14 15 strfv xB,yBxFuncyVxB,yBxFuncy=HomBasendxBHomndxxB,yBxFuncycompndxvB×B,zBg2ndvFuncz,fFuncvgfuncf
17 12 16 mp1i φxB,yBxFuncy=HomBasendxBHomndxxB,yBxFuncycompndxvB×B,zBg2ndvFuncz,fFuncvgfuncf
18 10 17 eqtr4d φH=xB,yBxFuncy