Metamath Proof Explorer


Theorem cats1fvn

Description: The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1 T=S++⟨“X”⟩
cats1cli.2 SWordV
cats1fvn.3 S=M
Assertion cats1fvn XVTM=X

Proof

Step Hyp Ref Expression
1 cats1cld.1 T=S++⟨“X”⟩
2 cats1cli.2 SWordV
3 cats1fvn.3 S=M
4 3 oveq2i 0+S=0+M
5 lencl SWordVS0
6 2 5 ax-mp S0
7 3 6 eqeltrri M0
8 7 nn0cni M
9 8 addlidi 0+M=M
10 4 9 eqtr2i M=0+S
11 1 10 fveq12i TM=S++⟨“X”⟩0+S
12 s1cli ⟨“X”⟩WordV
13 s1len ⟨“X”⟩=1
14 1nn 1
15 13 14 eqeltri ⟨“X”⟩
16 lbfzo0 00..^⟨“X”⟩⟨“X”⟩
17 15 16 mpbir 00..^⟨“X”⟩
18 ccatval3 SWordV⟨“X”⟩WordV00..^⟨“X”⟩S++⟨“X”⟩0+S=⟨“X”⟩0
19 2 12 17 18 mp3an S++⟨“X”⟩0+S=⟨“X”⟩0
20 11 19 eqtri TM=⟨“X”⟩0
21 s1fv XV⟨“X”⟩0=X
22 20 21 eqtrid XVTM=X