Metamath Proof Explorer


Theorem cau3

Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of j in the assertion, so it can be used with rexanuz and friends.) (Contributed by Mario Carneiro, 15-Feb-2014)

Ref Expression
Hypothesis cau3.1 Z=M
Assertion cau3 x+jZkjFkFkFj<xx+jZkjFkmkFkFm<x

Proof

Step Hyp Ref Expression
1 cau3.1 Z=M
2 uzssz M
3 1 2 eqsstri Z
4 id FkFk
5 eleq1 Fk=FjFkFj
6 eleq1 Fk=FmFkFm
7 abssub FjFkFjFk=FkFj
8 7 3adant1 FjFkFjFk=FkFj
9 abssub FmFjFmFj=FjFm
10 9 3adant1 FmFjFmFj=FjFm
11 abs3lem FkFmFjxFkFj<x2FjFm<x2FkFm<x
12 11 3adant1 FkFmFjxFkFj<x2FjFm<x2FkFm<x
13 3 4 5 6 8 10 12 cau3lem x+jZkjFkFkFj<xx+jZkjFkmkFkFm<x
14 13 mptru x+jZkjFkFkFj<xx+jZkjFkmkFkFm<x