Metamath Proof Explorer


Theorem cau3lem

Description: Lemma for cau3 . (Contributed by Mario Carneiro, 15-Feb-2014) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses cau3lem.1 Z
cau3lem.2 τ ψ
cau3lem.3 F k = F j ψ χ
cau3lem.4 F k = F m ψ θ
cau3lem.5 φ χ ψ G F j D F k = G F k D F j
cau3lem.6 φ θ χ G F m D F j = G F j D F m
cau3lem.7 φ ψ θ χ x G F k D F j < x 2 G F j D F m < x 2 G F k D F m < x
Assertion cau3lem φ x + j Z k j τ G F k D F j < x x + j Z k j τ m k G F k D F m < x

Proof

Step Hyp Ref Expression
1 cau3lem.1 Z
2 cau3lem.2 τ ψ
3 cau3lem.3 F k = F j ψ χ
4 cau3lem.4 F k = F m ψ θ
5 cau3lem.5 φ χ ψ G F j D F k = G F k D F j
6 cau3lem.6 φ θ χ G F m D F j = G F j D F m
7 cau3lem.7 φ ψ θ χ x G F k D F j < x 2 G F j D F m < x 2 G F k D F m < x
8 breq2 x = z G F k D F j < x G F k D F j < z
9 8 anbi2d x = z τ G F k D F j < x τ G F k D F j < z
10 9 rexralbidv x = z j Z k j τ G F k D F j < x j Z k j τ G F k D F j < z
11 10 cbvralvw x + j Z k j τ G F k D F j < x z + j Z k j τ G F k D F j < z
12 rphalfcl x + x 2 +
13 breq2 z = x 2 G F k D F j < z G F k D F j < x 2
14 13 anbi2d z = x 2 τ G F k D F j < z τ G F k D F j < x 2
15 14 rexralbidv z = x 2 j Z k j τ G F k D F j < z j Z k j τ G F k D F j < x 2
16 15 rspcv x 2 + z + j Z k j τ G F k D F j < z j Z k j τ G F k D F j < x 2
17 12 16 syl x + z + j Z k j τ G F k D F j < z j Z k j τ G F k D F j < x 2
18 17 adantl φ x + z + j Z k j τ G F k D F j < z j Z k j τ G F k D F j < x 2
19 2 ralimi k j τ k j ψ
20 r19.26 k j ψ G F k D F j < x 2 k j ψ k j G F k D F j < x 2
21 fveq2 k = m F k = F m
22 21 4 syl k = m ψ θ
23 21 fvoveq1d k = m G F k D F j = G F m D F j
24 23 breq1d k = m G F k D F j < x 2 G F m D F j < x 2
25 22 24 anbi12d k = m ψ G F k D F j < x 2 θ G F m D F j < x 2
26 25 cbvralvw k j ψ G F k D F j < x 2 m j θ G F m D F j < x 2
27 26 biimpi k j ψ G F k D F j < x 2 m j θ G F m D F j < x 2
28 27 a1i φ x + j Z k j ψ G F k D F j < x 2 m j θ G F m D F j < x 2
29 20 28 syl5bir φ x + j Z k j ψ k j G F k D F j < x 2 m j θ G F m D F j < x 2
30 29 expdimp φ x + j Z k j ψ k j G F k D F j < x 2 m j θ G F m D F j < x 2
31 1 sseli j Z j
32 uzid j j j
33 31 32 syl j Z j j
34 fveq2 k = j F k = F j
35 34 3 syl k = j ψ χ
36 35 rspcva j j k j ψ χ
37 33 36 sylan j Z k j ψ χ
38 37 adantll φ x + j Z k j ψ χ
39 30 38 jctild φ x + j Z k j ψ k j G F k D F j < x 2 χ m j θ G F m D F j < x 2
40 simplll φ x + χ θ ψ φ
41 simplrr φ x + χ θ ψ θ
42 simplrl φ x + χ θ ψ χ
43 40 41 42 6 syl3anc φ x + χ θ ψ G F m D F j = G F j D F m
44 43 breq1d φ x + χ θ ψ G F m D F j < x 2 G F j D F m < x 2
45 44 anbi2d φ x + χ θ ψ G F k D F j < x 2 G F m D F j < x 2 G F k D F j < x 2 G F j D F m < x 2
46 simpr φ x + χ θ ψ ψ
47 simpllr φ x + χ θ ψ x +
48 47 rpred φ x + χ θ ψ x
49 40 46 41 42 48 7 syl122anc φ x + χ θ ψ G F k D F j < x 2 G F j D F m < x 2 G F k D F m < x
50 45 49 sylbid φ x + χ θ ψ G F k D F j < x 2 G F m D F j < x 2 G F k D F m < x
51 50 expd φ x + χ θ ψ G F k D F j < x 2 G F m D F j < x 2 G F k D F m < x
52 51 impr φ x + χ θ ψ G F k D F j < x 2 G F m D F j < x 2 G F k D F m < x
53 52 an32s φ x + ψ G F k D F j < x 2 χ θ G F m D F j < x 2 G F k D F m < x
54 53 anassrs φ x + ψ G F k D F j < x 2 χ θ G F m D F j < x 2 G F k D F m < x
55 54 expimpd φ x + ψ G F k D F j < x 2 χ θ G F m D F j < x 2 G F k D F m < x
56 55 ralimdv φ x + ψ G F k D F j < x 2 χ m j θ G F m D F j < x 2 m j G F k D F m < x
57 56 impr φ x + ψ G F k D F j < x 2 χ m j θ G F m D F j < x 2 m j G F k D F m < x
58 57 an32s φ x + χ m j θ G F m D F j < x 2 ψ G F k D F j < x 2 m j G F k D F m < x
59 58 expr φ x + χ m j θ G F m D F j < x 2 ψ G F k D F j < x 2 m j G F k D F m < x
60 uzss k j k j
61 ssralv k j m j G F k D F m < x m k G F k D F m < x
62 60 61 syl k j m j G F k D F m < x m k G F k D F m < x
63 59 62 sylan9 φ x + χ m j θ G F m D F j < x 2 ψ k j G F k D F j < x 2 m k G F k D F m < x
64 63 an32s φ x + χ m j θ G F m D F j < x 2 k j ψ G F k D F j < x 2 m k G F k D F m < x
65 64 expimpd φ x + χ m j θ G F m D F j < x 2 k j ψ G F k D F j < x 2 m k G F k D F m < x
66 65 ralimdva φ x + χ m j θ G F m D F j < x 2 k j ψ G F k D F j < x 2 k j m k G F k D F m < x
67 66 ex φ x + χ m j θ G F m D F j < x 2 k j ψ G F k D F j < x 2 k j m k G F k D F m < x
68 67 com23 φ x + k j ψ G F k D F j < x 2 χ m j θ G F m D F j < x 2 k j m k G F k D F m < x
69 68 adantr φ x + j Z k j ψ G F k D F j < x 2 χ m j θ G F m D F j < x 2 k j m k G F k D F m < x
70 20 69 syl5bir φ x + j Z k j ψ k j G F k D F j < x 2 χ m j θ G F m D F j < x 2 k j m k G F k D F m < x
71 70 expdimp φ x + j Z k j ψ k j G F k D F j < x 2 χ m j θ G F m D F j < x 2 k j m k G F k D F m < x
72 39 71 mpdd φ x + j Z k j ψ k j G F k D F j < x 2 k j m k G F k D F m < x
73 19 72 sylan2 φ x + j Z k j τ k j G F k D F j < x 2 k j m k G F k D F m < x
74 73 imdistanda φ x + j Z k j τ k j G F k D F j < x 2 k j τ k j m k G F k D F m < x
75 r19.26 k j τ G F k D F j < x 2 k j τ k j G F k D F j < x 2
76 r19.26 k j τ m k G F k D F m < x k j τ k j m k G F k D F m < x
77 74 75 76 3imtr4g φ x + j Z k j τ G F k D F j < x 2 k j τ m k G F k D F m < x
78 77 reximdva φ x + j Z k j τ G F k D F j < x 2 j Z k j τ m k G F k D F m < x
79 18 78 syld φ x + z + j Z k j τ G F k D F j < z j Z k j τ m k G F k D F m < x
80 79 ralrimdva φ z + j Z k j τ G F k D F j < z x + j Z k j τ m k G F k D F m < x
81 11 80 syl5bi φ x + j Z k j τ G F k D F j < x x + j Z k j τ m k G F k D F m < x
82 fveq2 k = j k = j
83 34 fvoveq1d k = j G F k D F m = G F j D F m
84 83 breq1d k = j G F k D F m < x G F j D F m < x
85 82 84 raleqbidv k = j m k G F k D F m < x m j G F j D F m < x
86 85 rspcv j j k j m k G F k D F m < x m j G F j D F m < x
87 86 ad2antlr φ j j k j ψ k j m k G F k D F m < x m j G F j D F m < x
88 fveq2 m = k F m = F k
89 88 oveq2d m = k F j D F m = F j D F k
90 89 fveq2d m = k G F j D F m = G F j D F k
91 90 breq1d m = k G F j D F m < x G F j D F k < x
92 91 cbvralvw m j G F j D F m < x k j G F j D F k < x
93 36 anim2i φ j j k j ψ φ χ
94 93 anassrs φ j j k j ψ φ χ
95 simpr φ j j k j ψ k j ψ
96 5 breq1d φ χ ψ G F j D F k < x G F k D F j < x
97 96 3expia φ χ ψ G F j D F k < x G F k D F j < x
98 97 ralimdv φ χ k j ψ k j G F j D F k < x G F k D F j < x
99 94 95 98 sylc φ j j k j ψ k j G F j D F k < x G F k D F j < x
100 ralbi k j G F j D F k < x G F k D F j < x k j G F j D F k < x k j G F k D F j < x
101 99 100 syl φ j j k j ψ k j G F j D F k < x k j G F k D F j < x
102 92 101 syl5bb φ j j k j ψ m j G F j D F m < x k j G F k D F j < x
103 87 102 sylibd φ j j k j ψ k j m k G F k D F m < x k j G F k D F j < x
104 19 103 sylan2 φ j j k j τ k j m k G F k D F m < x k j G F k D F j < x
105 104 imdistanda φ j j k j τ k j m k G F k D F m < x k j τ k j G F k D F j < x
106 33 105 sylan2 φ j Z k j τ k j m k G F k D F m < x k j τ k j G F k D F j < x
107 r19.26 k j τ G F k D F j < x k j τ k j G F k D F j < x
108 106 76 107 3imtr4g φ j Z k j τ m k G F k D F m < x k j τ G F k D F j < x
109 108 reximdva φ j Z k j τ m k G F k D F m < x j Z k j τ G F k D F j < x
110 109 ralimdv φ x + j Z k j τ m k G F k D F m < x x + j Z k j τ G F k D F j < x
111 81 110 impbid φ x + j Z k j τ G F k D F j < x x + j Z k j τ m k G F k D F m < x