Metamath Proof Explorer


Theorem cbvmpo1

Description: Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses cbvmpo1.1 _xB
cbvmpo1.2 _zB
cbvmpo1.3 _zC
cbvmpo1.4 _xE
cbvmpo1.5 x=zC=E
Assertion cbvmpo1 xA,yBC=zA,yBE

Proof

Step Hyp Ref Expression
1 cbvmpo1.1 _xB
2 cbvmpo1.2 _zB
3 cbvmpo1.3 _zC
4 cbvmpo1.4 _xE
5 cbvmpo1.5 x=zC=E
6 nfv zxA
7 2 nfcri zyB
8 6 7 nfan zxAyB
9 3 nfeq2 zu=C
10 8 9 nfan zxAyBu=C
11 nfv xzA
12 1 nfcri xyB
13 11 12 nfan xzAyB
14 4 nfeq2 xu=E
15 13 14 nfan xzAyBu=E
16 eleq1w x=zxAzA
17 16 anbi1d x=zxAyBzAyB
18 5 eqeq2d x=zu=Cu=E
19 17 18 anbi12d x=zxAyBu=CzAyBu=E
20 10 15 19 cbvoprab1 xyu|xAyBu=C=zyu|zAyBu=E
21 df-mpo xA,yBC=xyu|xAyBu=C
22 df-mpo zA,yBE=zyu|zAyBu=E
23 20 21 22 3eqtr4i xA,yBC=zA,yBE