Metamath Proof Explorer


Theorem cbvoprab1

Description: Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008) (Revised by Mario Carneiro, 5-Dec-2016)

Ref Expression
Hypotheses cbvoprab1.1 wφ
cbvoprab1.2 xψ
cbvoprab1.3 x=wφψ
Assertion cbvoprab1 xyz|φ=wyz|ψ

Proof

Step Hyp Ref Expression
1 cbvoprab1.1 wφ
2 cbvoprab1.2 xψ
3 cbvoprab1.3 x=wφψ
4 nfv wv=xy
5 4 1 nfan wv=xyφ
6 5 nfex wyv=xyφ
7 nfv xv=wy
8 7 2 nfan xv=wyψ
9 8 nfex xyv=wyψ
10 opeq1 x=wxy=wy
11 10 eqeq2d x=wv=xyv=wy
12 11 3 anbi12d x=wv=xyφv=wyψ
13 12 exbidv x=wyv=xyφyv=wyψ
14 6 9 13 cbvexv1 xyv=xyφwyv=wyψ
15 14 opabbii vz|xyv=xyφ=vz|wyv=wyψ
16 dfoprab2 xyz|φ=vz|xyv=xyφ
17 dfoprab2 wyz|ψ=vz|wyv=wyψ
18 15 16 17 3eqtr4i xyz|φ=wyz|ψ