Metamath Proof Explorer


Theorem cbvmpox

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo allows B to be a function of x . (Contributed by NM, 29-Dec-2014)

Ref Expression
Hypotheses cbvmpox.1 _ z B
cbvmpox.2 _ x D
cbvmpox.3 _ z C
cbvmpox.4 _ w C
cbvmpox.5 _ x E
cbvmpox.6 _ y E
cbvmpox.7 x = z B = D
cbvmpox.8 x = z y = w C = E
Assertion cbvmpox x A , y B C = z A , w D E

Proof

Step Hyp Ref Expression
1 cbvmpox.1 _ z B
2 cbvmpox.2 _ x D
3 cbvmpox.3 _ z C
4 cbvmpox.4 _ w C
5 cbvmpox.5 _ x E
6 cbvmpox.6 _ y E
7 cbvmpox.7 x = z B = D
8 cbvmpox.8 x = z y = w C = E
9 nfv z x A
10 1 nfcri z y B
11 9 10 nfan z x A y B
12 3 nfeq2 z u = C
13 11 12 nfan z x A y B u = C
14 nfv w x A
15 nfcv _ w B
16 15 nfcri w y B
17 14 16 nfan w x A y B
18 4 nfeq2 w u = C
19 17 18 nfan w x A y B u = C
20 nfv x z A
21 2 nfcri x w D
22 20 21 nfan x z A w D
23 5 nfeq2 x u = E
24 22 23 nfan x z A w D u = E
25 nfv y z A w D
26 6 nfeq2 y u = E
27 25 26 nfan y z A w D u = E
28 eleq1w x = z x A z A
29 28 adantr x = z y = w x A z A
30 7 eleq2d x = z y B y D
31 eleq1w y = w y D w D
32 30 31 sylan9bb x = z y = w y B w D
33 29 32 anbi12d x = z y = w x A y B z A w D
34 8 eqeq2d x = z y = w u = C u = E
35 33 34 anbi12d x = z y = w x A y B u = C z A w D u = E
36 13 19 24 27 35 cbvoprab12 x y u | x A y B u = C = z w u | z A w D u = E
37 df-mpo x A , y B C = x y u | x A y B u = C
38 df-mpo z A , w D E = z w u | z A w D u = E
39 36 37 38 3eqtr4i x A , y B C = z A , w D E