Metamath Proof Explorer


Theorem cbvopab2davw

Description: Change the second bound variable in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvopab2davw.1 φ y = z ψ χ
Assertion cbvopab2davw φ x y | ψ = x z | χ

Proof

Step Hyp Ref Expression
1 cbvopab2davw.1 φ y = z ψ χ
2 opeq2 y = z x y = x z
3 2 eqeq2d y = z t = x y t = x z
4 3 adantl φ y = z t = x y t = x z
5 4 1 anbi12d φ y = z t = x y ψ t = x z χ
6 5 cbvexdvaw φ y t = x y ψ z t = x z χ
7 6 exbidv φ x y t = x y ψ x z t = x z χ
8 7 abbidv φ t | x y t = x y ψ = t | x z t = x z χ
9 df-opab x y | ψ = t | x y t = x y ψ
10 df-opab x z | χ = t | x z t = x z χ
11 8 9 10 3eqtr4g φ x y | ψ = x z | χ