Metamath Proof Explorer


Theorem cbvoprab13vw

Description: Change the first and third bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab13vw.1 x = w z = v ψ χ
Assertion cbvoprab13vw x y z | ψ = w y v | χ

Proof

Step Hyp Ref Expression
1 cbvoprab13vw.1 x = w z = v ψ χ
2 opeq1 x = w x y = w y
3 2 adantr x = w z = v x y = w y
4 simpr x = w z = v z = v
5 3 4 opeq12d x = w z = v x y z = w y v
6 5 eqeq2d x = w z = v t = x y z t = w y v
7 6 1 anbi12d x = w z = v t = x y z ψ t = w y v χ
8 7 cbvexdvaw x = w z t = x y z ψ v t = w y v χ
9 8 exbidv x = w y z t = x y z ψ y v t = w y v χ
10 9 cbvexvw x y z t = x y z ψ w y v t = w y v χ
11 10 abbii t | x y z t = x y z ψ = t | w y v t = w y v χ
12 df-oprab x y z | ψ = t | x y z t = x y z ψ
13 df-oprab w y v | χ = t | w y v t = w y v χ
14 11 12 13 3eqtr4i x y z | ψ = w y v | χ