Metamath Proof Explorer


Theorem cbvoprab1davw

Description: Change the first bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab1davw.1 φ x = w ψ χ
Assertion cbvoprab1davw φ x y z | ψ = w y z | χ

Proof

Step Hyp Ref Expression
1 cbvoprab1davw.1 φ x = w ψ χ
2 opeq1 x = w x y = w y
3 2 adantl φ x = w x y = w y
4 3 opeq1d φ x = w x y z = w y z
5 4 eqeq2d φ x = w t = x y z t = w y z
6 5 1 anbi12d φ x = w t = x y z ψ t = w y z χ
7 6 2exbidv φ x = w y z t = x y z ψ y z t = w y z χ
8 7 cbvexdvaw φ x y z t = x y z ψ w y z t = w y z χ
9 8 abbidv φ t | x y z t = x y z ψ = t | w y z t = w y z χ
10 df-oprab x y z | ψ = t | x y z t = x y z ψ
11 df-oprab w y z | χ = t | w y z t = w y z χ
12 9 10 11 3eqtr4g φ x y z | ψ = w y z | χ