Metamath Proof Explorer


Theorem cbvrabdavw

Description: Change bound variable in restricted class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvrabdavw.1 φ x = y ψ χ
Assertion cbvrabdavw φ x A | ψ = y A | χ

Proof

Step Hyp Ref Expression
1 cbvrabdavw.1 φ x = y ψ χ
2 eleq1w x = y x A y A
3 2 adantl φ x = y x A y A
4 3 1 anbi12d φ x = y x A ψ y A χ
5 4 cbvabdavw φ x | x A ψ = y | y A χ
6 df-rab x A | ψ = x | x A ψ
7 df-rab y A | χ = y | y A χ
8 5 6 7 3eqtr4g φ x A | ψ = y A | χ