Metamath Proof Explorer


Theorem cbvrmodavw

Description: Change bound variable in the restricted at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvrmodavw.1 φ x = y ψ χ
Assertion cbvrmodavw φ * x A ψ * y A χ

Proof

Step Hyp Ref Expression
1 cbvrmodavw.1 φ x = y ψ χ
2 eleq1w x = y x A y A
3 2 adantl φ x = y x A y A
4 3 1 anbi12d φ x = y x A ψ y A χ
5 4 cbvmodavw φ * x x A ψ * y y A χ
6 df-rmo * x A ψ * x x A ψ
7 df-rmo * y A χ * y y A χ
8 5 6 7 3bitr4g φ * x A ψ * y A χ