Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted existential uniqueness and at-most-one quantifier cbvrmow  
				
		 
		
			
		 
		Description:   Change the bound variable of a restricted at-most-one quantifier using
       implicit substitution.  Version of cbvrmo  with a disjoint variable
       condition, which does not require ax-10  , ax-13  .  (Contributed by NM , 16-Jun-2017)   Avoid ax-10  , ax-13  .  (Revised by GG , 23-May-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						cbvrmow.1   ⊢   Ⅎ  y   φ        
					 
					
						cbvrmow.2   ⊢   Ⅎ  x   ψ        
					 
					
						cbvrmow.3    ⊢   x  =  y    →    φ   ↔   ψ         
					 
				
					Assertion 
					cbvrmow    ⊢   ∃ * x  ∈  A   φ     ↔   ∃ * y  ∈  A   ψ          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							cbvrmow.1  ⊢   Ⅎ  y   φ        
						
							2 
								
							 
							cbvrmow.2  ⊢   Ⅎ  x   ψ        
						
							3 
								
							 
							cbvrmow.3   ⊢   x  =  y    →    φ   ↔   ψ         
						
							4 
								
							 
							nfv  ⊢   Ⅎ  y   x  ∈  A         
						
							5 
								4  1 
							 
							nfan  ⊢   Ⅎ  y    x  ∈  A    ∧   φ         
						
							6 
								
							 
							nfv  ⊢   Ⅎ  x   y  ∈  A         
						
							7 
								6  2 
							 
							nfan  ⊢   Ⅎ  x    y  ∈  A    ∧   ψ         
						
							8 
								
							 
							eleq1w   ⊢   x  =  y    →    x  ∈  A    ↔   y  ∈  A          
						
							9 
								8  3 
							 
							anbi12d   ⊢   x  =  y    →     x  ∈  A    ∧   φ    ↔    y  ∈  A    ∧   ψ          
						
							10 
								5  7  9 
							 
							cbvmow   ⊢   ∃ * x    x  ∈  A    ∧   φ      ↔   ∃ * y    y  ∈  A    ∧   ψ           
						
							11 
								
							 
							df-rmo   ⊢   ∃ * x  ∈  A   φ     ↔   ∃ * x    x  ∈  A    ∧   φ           
						
							12 
								
							 
							df-rmo   ⊢   ∃ * y  ∈  A   ψ     ↔   ∃ * y    y  ∈  A    ∧   ψ           
						
							13 
								10  11  12 
							 
							3bitr4i   ⊢   ∃ * x  ∈  A   φ     ↔   ∃ * y  ∈  A   ψ