Metamath Proof Explorer


Theorem ccat2s1p2

Description: Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Revised by JJ, 20-Jan-2024)

Ref Expression
Assertion ccat2s1p2 YV⟨“X”⟩++⟨“Y”⟩1=Y

Proof

Step Hyp Ref Expression
1 s1cli ⟨“X”⟩WordV
2 s1cli ⟨“Y”⟩WordV
3 1z 1
4 2z 2
5 1lt2 1<2
6 fzolb 11..^2121<2
7 3 4 5 6 mpbir3an 11..^2
8 s1len ⟨“X”⟩=1
9 s1len ⟨“Y”⟩=1
10 8 9 oveq12i ⟨“X”⟩+⟨“Y”⟩=1+1
11 1p1e2 1+1=2
12 10 11 eqtri ⟨“X”⟩+⟨“Y”⟩=2
13 8 12 oveq12i ⟨“X”⟩..^⟨“X”⟩+⟨“Y”⟩=1..^2
14 7 13 eleqtrri 1⟨“X”⟩..^⟨“X”⟩+⟨“Y”⟩
15 ccatval2 ⟨“X”⟩WordV⟨“Y”⟩WordV1⟨“X”⟩..^⟨“X”⟩+⟨“Y”⟩⟨“X”⟩++⟨“Y”⟩1=⟨“Y”⟩1⟨“X”⟩
16 1 2 14 15 mp3an ⟨“X”⟩++⟨“Y”⟩1=⟨“Y”⟩1⟨“X”⟩
17 8 oveq2i 1⟨“X”⟩=11
18 1m1e0 11=0
19 17 18 eqtri 1⟨“X”⟩=0
20 19 fveq2i ⟨“Y”⟩1⟨“X”⟩=⟨“Y”⟩0
21 16 20 eqtri ⟨“X”⟩++⟨“Y”⟩1=⟨“Y”⟩0
22 s1fv YV⟨“Y”⟩0=Y
23 21 22 eqtrid YV⟨“X”⟩++⟨“Y”⟩1=Y