Metamath Proof Explorer


Theorem cdleme11e

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 13-Jun-2012)

Ref Expression
Hypotheses cdleme11.l ˙=K
cdleme11.j ˙=joinK
cdleme11.m ˙=meetK
cdleme11.a A=AtomsK
cdleme11.h H=LHypK
cdleme11.u U=P˙Q˙W
cdleme11.c C=P˙S˙W
cdleme11.d D=P˙T˙W
Assertion cdleme11e KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TCD

Proof

Step Hyp Ref Expression
1 cdleme11.l ˙=K
2 cdleme11.j ˙=joinK
3 cdleme11.m ˙=meetK
4 cdleme11.a A=AtomsK
5 cdleme11.h H=LHypK
6 cdleme11.u U=P˙Q˙W
7 cdleme11.c C=P˙S˙W
8 cdleme11.d D=P˙T˙W
9 simp11 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TKHLWH
10 simp12 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TPA¬P˙W
11 simp22 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TTA
12 simp21 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TSA¬S˙W
13 simp11l KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TKHL
14 13 hllatd KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TKLat
15 simp12l KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TPA
16 eqid BaseK=BaseK
17 16 4 atbase PAPBaseK
18 15 17 syl KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TPBaseK
19 simp21l KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TSA
20 16 4 atbase SASBaseK
21 19 20 syl KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TSBaseK
22 16 4 atbase TATBaseK
23 11 22 syl KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TTBaseK
24 simp1 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TKHLWHPA¬P˙WQA
25 simp2 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TSA¬S˙WTAPQ
26 simp32 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙T¬S˙P˙Q
27 simp33 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TU˙S˙T
28 1 2 3 4 5 6 cdleme11c KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙T¬P˙S˙T
29 24 25 26 27 28 syl112anc KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙T¬P˙S˙T
30 16 1 2 latnlej1r KLatPBaseKSBaseKTBaseK¬P˙S˙TPT
31 14 18 21 23 29 30 syl131anc KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TPT
32 simp31 KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TST
33 1 2 4 hlatcon2 KHLSATAPAST¬P˙S˙T¬S˙P˙T
34 13 19 11 15 32 29 33 syl132anc KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙T¬S˙P˙T
35 1 2 3 4 5 8 7 cdleme0e KHLWHPA¬P˙WTASA¬S˙WPT¬S˙P˙TDC
36 9 10 11 12 31 34 35 syl132anc KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TDC
37 36 necomd KHLWHPA¬P˙WQASA¬S˙WTAPQST¬S˙P˙QU˙S˙TCD