Metamath Proof Explorer


Theorem cdleme0e

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 13-Jun-2012)

Ref Expression
Hypotheses cdleme0.l ˙=K
cdleme0.j ˙=joinK
cdleme0.m ˙=meetK
cdleme0.a A=AtomsK
cdleme0.h H=LHypK
cdleme0.u U=P˙Q˙W
cdleme0c.3 V=P˙R˙W
Assertion cdleme0e KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QUV

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙=K
2 cdleme0.j ˙=joinK
3 cdleme0.m ˙=meetK
4 cdleme0.a A=AtomsK
5 cdleme0.h H=LHypK
6 cdleme0.u U=P˙Q˙W
7 cdleme0c.3 V=P˙R˙W
8 6 7 oveq12i U˙V=P˙Q˙W˙P˙R˙W
9 simp1l KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QKHL
10 hlol KHLKOL
11 9 10 syl KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QKOL
12 simp21l KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QPA
13 simp22 KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QQA
14 eqid BaseK=BaseK
15 14 2 4 hlatjcl KHLPAQAP˙QBaseK
16 9 12 13 15 syl3anc KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QP˙QBaseK
17 simp23l KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QRA
18 14 2 4 hlatjcl KHLPARAP˙RBaseK
19 9 12 17 18 syl3anc KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QP˙RBaseK
20 simp1r KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QWH
21 14 5 lhpbase WHWBaseK
22 20 21 syl KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QWBaseK
23 14 3 latmmdir KOLP˙QBaseKP˙RBaseKWBaseKP˙Q˙P˙R˙W=P˙Q˙W˙P˙R˙W
24 11 16 19 22 23 syl13anc KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QP˙Q˙P˙R˙W=P˙Q˙W˙P˙R˙W
25 9 hllatd KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QKLat
26 14 4 atbase RARBaseK
27 17 26 syl KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QRBaseK
28 14 4 atbase PAPBaseK
29 12 28 syl KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QPBaseK
30 14 4 atbase QAQBaseK
31 13 30 syl KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QQBaseK
32 simp3r KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙Q¬R˙P˙Q
33 14 1 2 latnlej1r KLatRBaseKPBaseKQBaseK¬R˙P˙QRQ
34 33 necomd KLatRBaseKPBaseKQBaseK¬R˙P˙QQR
35 25 27 29 31 32 34 syl131anc KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QQR
36 simp3 KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QPQ¬R˙P˙Q
37 1 2 4 hlatcon3 KHLPAQARAPQ¬R˙P˙Q¬P˙Q˙R
38 9 12 13 17 36 37 syl131anc KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙Q¬P˙Q˙R
39 1 2 3 4 2llnma2 KHLQARAPAQR¬P˙Q˙RP˙Q˙P˙R=P
40 9 13 17 12 35 38 39 syl132anc KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QP˙Q˙P˙R=P
41 40 oveq1d KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QP˙Q˙P˙R˙W=P˙W
42 24 41 eqtr3d KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QP˙Q˙W˙P˙R˙W=P˙W
43 8 42 eqtrid KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QU˙V=P˙W
44 simp1 KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QKHLWH
45 simp21 KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QPA¬P˙W
46 eqid 0.K=0.K
47 1 3 46 4 5 lhpmat KHLWHPA¬P˙WP˙W=0.K
48 44 45 47 syl2anc KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QP˙W=0.K
49 43 48 eqtrd KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QU˙V=0.K
50 hlatl KHLKAtLat
51 9 50 syl KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QKAtLat
52 simp3l KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QPQ
53 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
54 44 45 13 52 53 syl112anc KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QUA
55 14 1 2 latnlej1l KLatRBaseKPBaseKQBaseK¬R˙P˙QRP
56 55 necomd KLatRBaseKPBaseKQBaseK¬R˙P˙QPR
57 25 27 29 31 32 56 syl131anc KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QPR
58 1 2 3 4 5 7 lhpat2 KHLWHPA¬P˙WRAPRVA
59 44 45 17 57 58 syl112anc KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QVA
60 3 46 4 atnem0 KAtLatUAVAUVU˙V=0.K
61 51 54 59 60 syl3anc KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QUVU˙V=0.K
62 49 61 mpbird KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QUV