Metamath Proof Explorer


Theorem cdleme0fN

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 14-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l ˙ = K
cdleme0.j ˙ = join K
cdleme0.m ˙ = meet K
cdleme0.a A = Atoms K
cdleme0.h H = LHyp K
cdleme0.u U = P ˙ Q ˙ W
cdleme0c.3 V = P ˙ R ˙ W
Assertion cdleme0fN K HL W H P A ¬ P ˙ W Q A R A V P

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙ = K
2 cdleme0.j ˙ = join K
3 cdleme0.m ˙ = meet K
4 cdleme0.a A = Atoms K
5 cdleme0.h H = LHyp K
6 cdleme0.u U = P ˙ Q ˙ W
7 cdleme0c.3 V = P ˙ R ˙ W
8 simp1l K HL W H P A ¬ P ˙ W Q A R A K HL
9 8 hllatd K HL W H P A ¬ P ˙ W Q A R A K Lat
10 simp2l K HL W H P A ¬ P ˙ W Q A R A P A
11 eqid Base K = Base K
12 11 4 atbase P A P Base K
13 10 12 syl K HL W H P A ¬ P ˙ W Q A R A P Base K
14 simp3r K HL W H P A ¬ P ˙ W Q A R A R A
15 11 4 atbase R A R Base K
16 14 15 syl K HL W H P A ¬ P ˙ W Q A R A R Base K
17 11 2 latjcl K Lat P Base K R Base K P ˙ R Base K
18 9 13 16 17 syl3anc K HL W H P A ¬ P ˙ W Q A R A P ˙ R Base K
19 simp1r K HL W H P A ¬ P ˙ W Q A R A W H
20 11 5 lhpbase W H W Base K
21 19 20 syl K HL W H P A ¬ P ˙ W Q A R A W Base K
22 11 1 3 latmle2 K Lat P ˙ R Base K W Base K P ˙ R ˙ W ˙ W
23 9 18 21 22 syl3anc K HL W H P A ¬ P ˙ W Q A R A P ˙ R ˙ W ˙ W
24 7 23 eqbrtrid K HL W H P A ¬ P ˙ W Q A R A V ˙ W
25 simp2r K HL W H P A ¬ P ˙ W Q A R A ¬ P ˙ W
26 nbrne2 V ˙ W ¬ P ˙ W V P
27 24 25 26 syl2anc K HL W H P A ¬ P ˙ W Q A R A V P