Metamath Proof Explorer


Theorem cdleme0fN

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 14-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l = ( le ‘ 𝐾 )
cdleme0.j = ( join ‘ 𝐾 )
cdleme0.m = ( meet ‘ 𝐾 )
cdleme0.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme0.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme0c.3 𝑉 = ( ( 𝑃 𝑅 ) 𝑊 )
Assertion cdleme0fN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → 𝑉𝑃 )

Proof

Step Hyp Ref Expression
1 cdleme0.l = ( le ‘ 𝐾 )
2 cdleme0.j = ( join ‘ 𝐾 )
3 cdleme0.m = ( meet ‘ 𝐾 )
4 cdleme0.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme0.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme0c.3 𝑉 = ( ( 𝑃 𝑅 ) 𝑊 )
8 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → 𝐾 ∈ HL )
9 8 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → 𝐾 ∈ Lat )
10 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → 𝑃𝐴 )
11 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
12 11 4 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
13 10 12 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
14 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → 𝑅𝐴 )
15 11 4 atbase ( 𝑅𝐴𝑅 ∈ ( Base ‘ 𝐾 ) )
16 14 15 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) )
17 11 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
18 9 13 16 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → ( 𝑃 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
19 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → 𝑊𝐻 )
20 11 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
21 19 20 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
22 11 1 3 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑅 ) 𝑊 ) 𝑊 )
23 9 18 21 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → ( ( 𝑃 𝑅 ) 𝑊 ) 𝑊 )
24 7 23 eqbrtrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → 𝑉 𝑊 )
25 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → ¬ 𝑃 𝑊 )
26 nbrne2 ( ( 𝑉 𝑊 ∧ ¬ 𝑃 𝑊 ) → 𝑉𝑃 )
27 24 25 26 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑅𝐴 ) ) → 𝑉𝑃 )