Metamath Proof Explorer


Theorem cdleme20e

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, 4th line. D , F , Y , G represent s_2, f(s), t_2, f(t). We show and are centrally perspective. (Contributed by NM, 17-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
cdleme20.v V=S˙T˙W
Assertion cdleme20e KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QF˙G˙D˙Y˙S˙T

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 cdleme20.v V=S˙T˙W
12 1 2 3 4 5 6 7 8 9 10 11 cdleme20d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QF˙G˙D˙Y=V
13 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QKHL
14 13 hllatd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QKLat
15 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QSA
16 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QTA
17 eqid BaseK=BaseK
18 17 2 4 hlatjcl KHLSATAS˙TBaseK
19 13 15 16 18 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QS˙TBaseK
20 simp11r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QWH
21 17 5 lhpbase WHWBaseK
22 20 21 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QWBaseK
23 17 1 3 latmle1 KLatS˙TBaseKWBaseKS˙T˙W˙S˙T
24 14 19 22 23 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QS˙T˙W˙S˙T
25 11 24 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QV˙S˙T
26 12 25 eqbrtrd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QF˙G˙D˙Y˙S˙T