Metamath Proof Explorer


Theorem cdleme22gb

Description: Utility lemma for Lemma E in Crawley p. 115. (Contributed by NM, 5-Dec-2012)

Ref Expression
Hypotheses cdleme18d.l ˙=K
cdleme18d.j ˙=joinK
cdleme18d.m ˙=meetK
cdleme18d.a A=AtomsK
cdleme18d.h H=LHypK
cdleme18d.u U=P˙Q˙W
cdleme18d.f F=S˙U˙Q˙P˙S˙W
cdleme18d.g G=P˙Q˙F˙R˙S˙W
cdleme22.b B=BaseK
Assertion cdleme22gb KHLWHPAQARASAGB

Proof

Step Hyp Ref Expression
1 cdleme18d.l ˙=K
2 cdleme18d.j ˙=joinK
3 cdleme18d.m ˙=meetK
4 cdleme18d.a A=AtomsK
5 cdleme18d.h H=LHypK
6 cdleme18d.u U=P˙Q˙W
7 cdleme18d.f F=S˙U˙Q˙P˙S˙W
8 cdleme18d.g G=P˙Q˙F˙R˙S˙W
9 cdleme22.b B=BaseK
10 simp1l KHLWHPAQARASAKHL
11 10 hllatd KHLWHPAQARASAKLat
12 simp2l KHLWHPAQARASAPA
13 simp2r KHLWHPAQARASAQA
14 9 2 4 hlatjcl KHLPAQAP˙QB
15 10 12 13 14 syl3anc KHLWHPAQARASAP˙QB
16 simp1 KHLWHPAQARASAKHLWH
17 simp3r KHLWHPAQARASASA
18 1 2 3 4 5 6 7 9 cdleme1b KHLWHPAQASAFB
19 16 12 13 17 18 syl13anc KHLWHPAQARASAFB
20 simp3l KHLWHPAQARASARA
21 9 2 4 hlatjcl KHLRASAR˙SB
22 10 20 17 21 syl3anc KHLWHPAQARASAR˙SB
23 simp1r KHLWHPAQARASAWH
24 9 5 lhpbase WHWB
25 23 24 syl KHLWHPAQARASAWB
26 9 3 latmcl KLatR˙SBWBR˙S˙WB
27 11 22 25 26 syl3anc KHLWHPAQARASAR˙S˙WB
28 9 2 latjcl KLatFBR˙S˙WBF˙R˙S˙WB
29 11 19 27 28 syl3anc KHLWHPAQARASAF˙R˙S˙WB
30 9 3 latmcl KLatP˙QBF˙R˙S˙WBP˙Q˙F˙R˙S˙WB
31 11 15 29 30 syl3anc KHLWHPAQARASAP˙Q˙F˙R˙S˙WB
32 8 31 eqeltrid KHLWHPAQARASAGB