Metamath Proof Explorer


Theorem cdleme26ee

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 4th line on p. 115. F , N , O represent f(z), f_z(s), f_z(t) respectively. When t \/ v = p \/ q, f_z(s) <_ f_z(t) \/ v. TODO: FIX COMMENT. (Contributed by NM, 2-Feb-2013)

Ref Expression
Hypotheses cdleme26.b B=BaseK
cdleme26.l ˙=K
cdleme26.j ˙=joinK
cdleme26.m ˙=meetK
cdleme26.a A=AtomsK
cdleme26.h H=LHypK
cdleme26e.u U=P˙Q˙W
cdleme26e.f F=z˙U˙Q˙P˙z˙W
cdleme26e.n N=P˙Q˙F˙S˙z˙W
cdleme26e.o O=P˙Q˙F˙T˙z˙W
cdleme26e.i I=ιuB|zA¬z˙W¬z˙P˙Qu=N
cdleme26e.e E=ιuB|zA¬z˙W¬z˙P˙Qu=O
Assertion cdleme26ee KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QI˙E˙V

Proof

Step Hyp Ref Expression
1 cdleme26.b B=BaseK
2 cdleme26.l ˙=K
3 cdleme26.j ˙=joinK
4 cdleme26.m ˙=meetK
5 cdleme26.a A=AtomsK
6 cdleme26.h H=LHypK
7 cdleme26e.u U=P˙Q˙W
8 cdleme26e.f F=z˙U˙Q˙P˙z˙W
9 cdleme26e.n N=P˙Q˙F˙S˙z˙W
10 cdleme26e.o O=P˙Q˙F˙T˙z˙W
11 cdleme26e.i I=ιuB|zA¬z˙W¬z˙P˙Qu=N
12 cdleme26e.e E=ιuB|zA¬z˙W¬z˙P˙Qu=O
13 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QKHL
14 simp11r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QWH
15 simp12 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QPA¬P˙W
16 simp13 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QQA¬Q˙W
17 simp3l1 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QPQ
18 2 3 5 6 cdlemb2 KHLWHPA¬P˙WQA¬Q˙WPQzA¬z˙W¬z˙P˙Q
19 13 14 15 16 17 18 syl221anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙Q
20 nfv zKHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q
21 nfra1 zzA¬z˙W¬z˙P˙Qu=N
22 nfcv _zB
23 21 22 nfriota _zιuB|zA¬z˙W¬z˙P˙Qu=N
24 11 23 nfcxfr _zI
25 nfcv _z˙
26 nfra1 zzA¬z˙W¬z˙P˙Qu=O
27 26 22 nfriota _zιuB|zA¬z˙W¬z˙P˙Qu=O
28 12 27 nfcxfr _zE
29 nfcv _z˙
30 nfcv _zV
31 28 29 30 nfov _zE˙V
32 24 25 31 nfbr zI˙E˙V
33 simp111 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QKHLWH
34 simp112 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QPA¬P˙W
35 simp113 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QQA¬Q˙W
36 simp121 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QSA¬S˙W
37 simp122 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QTA¬T˙W
38 simp123 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QVAV˙W
39 simp13l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QPQS˙P˙QT˙P˙Q
40 simp13r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QT˙V=P˙Q
41 simp3r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙Q¬z˙P˙Q
42 40 41 jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QT˙V=P˙Q¬z˙P˙Q
43 simp2 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QzA
44 simp3l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙Q¬z˙W
45 43 44 jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QzA¬z˙W
46 1 2 3 4 5 6 7 8 9 10 11 12 cdleme26e KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙Q¬z˙P˙QzA¬z˙WI˙E˙V
47 33 34 35 36 37 38 39 42 45 46 syl333anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QI˙E˙V
48 47 3exp KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QI˙E˙V
49 20 32 48 rexlimd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QzA¬z˙W¬z˙P˙QI˙E˙V
50 19 49 mpd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WVAV˙WPQS˙P˙QT˙P˙QT˙V=P˙QI˙E˙V