Metamath Proof Explorer


Theorem cdleme3e

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme3fa and cdleme3 . (Contributed by NM, 6-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙=K
cdleme1.j ˙=joinK
cdleme1.m ˙=meetK
cdleme1.a A=AtomsK
cdleme1.h H=LHypK
cdleme1.u U=P˙Q˙W
cdleme1.f F=R˙U˙Q˙P˙R˙W
cdleme3.3 V=P˙R˙W
Assertion cdleme3e KHLWHPA¬P˙WQARA¬R˙P˙QVA

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙=K
2 cdleme1.j ˙=joinK
3 cdleme1.m ˙=meetK
4 cdleme1.a A=AtomsK
5 cdleme1.h H=LHypK
6 cdleme1.u U=P˙Q˙W
7 cdleme1.f F=R˙U˙Q˙P˙R˙W
8 cdleme3.3 V=P˙R˙W
9 simpl KHLWHPA¬P˙WQARA¬R˙P˙QKHLWH
10 simpr1 KHLWHPA¬P˙WQARA¬R˙P˙QPA¬P˙W
11 simpr3l KHLWHPA¬P˙WQARA¬R˙P˙QRA
12 hllat KHLKLat
13 12 ad2antrr KHLWHPA¬P˙WQARA¬R˙P˙QKLat
14 eqid BaseK=BaseK
15 14 4 atbase RARBaseK
16 11 15 syl KHLWHPA¬P˙WQARA¬R˙P˙QRBaseK
17 simpr1l KHLWHPA¬P˙WQARA¬R˙P˙QPA
18 14 4 atbase PAPBaseK
19 17 18 syl KHLWHPA¬P˙WQARA¬R˙P˙QPBaseK
20 simpr2 KHLWHPA¬P˙WQARA¬R˙P˙QQA
21 14 4 atbase QAQBaseK
22 20 21 syl KHLWHPA¬P˙WQARA¬R˙P˙QQBaseK
23 simpr3r KHLWHPA¬P˙WQARA¬R˙P˙Q¬R˙P˙Q
24 14 1 2 latnlej1l KLatRBaseKPBaseKQBaseK¬R˙P˙QRP
25 13 16 19 22 23 24 syl131anc KHLWHPA¬P˙WQARA¬R˙P˙QRP
26 25 necomd KHLWHPA¬P˙WQARA¬R˙P˙QPR
27 1 2 3 4 5 lhpat KHLWHPA¬P˙WRAPRP˙R˙WA
28 9 10 11 26 27 syl112anc KHLWHPA¬P˙WQARA¬R˙P˙QP˙R˙WA
29 8 28 eqeltrid KHLWHPA¬P˙WQARA¬R˙P˙QVA