Metamath Proof Explorer


Theorem cdleme42e

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 8-Mar-2013)

Ref Expression
Hypotheses cdleme41.b B=BaseK
cdleme41.l ˙=K
cdleme41.j ˙=joinK
cdleme41.m ˙=meetK
cdleme41.a A=AtomsK
cdleme41.h H=LHypK
cdleme41.u U=P˙Q˙W
cdleme41.d D=s˙U˙Q˙P˙s˙W
cdleme41.e E=t˙U˙Q˙P˙t˙W
cdleme41.g G=P˙Q˙E˙s˙t˙W
cdleme41.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
cdleme41.n N=ifs˙P˙QID
cdleme41.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme41.f F=xBifPQ¬x˙WOx
cdleme34e.v V=R˙S˙W
Assertion cdleme42e KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙V=R/sN˙R˙V˙W

Proof

Step Hyp Ref Expression
1 cdleme41.b B=BaseK
2 cdleme41.l ˙=K
3 cdleme41.j ˙=joinK
4 cdleme41.m ˙=meetK
5 cdleme41.a A=AtomsK
6 cdleme41.h H=LHypK
7 cdleme41.u U=P˙Q˙W
8 cdleme41.d D=s˙U˙Q˙P˙s˙W
9 cdleme41.e E=t˙U˙Q˙P˙t˙W
10 cdleme41.g G=P˙Q˙E˙s˙t˙W
11 cdleme41.i I=ιyB|tA¬t˙W¬t˙P˙Qy=G
12 cdleme41.n N=ifs˙P˙QID
13 cdleme41.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme41.f F=xBifPQ¬x˙WOx
15 cdleme34e.v V=R˙S˙W
16 simp1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKHLWHPA¬P˙WQA¬Q˙W
17 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKHL
18 17 hllatd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKLat
19 simp2ll KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQRA
20 1 5 atbase RARB
21 19 20 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQRB
22 simp11 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQKHLWH
23 simp2rl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQSA
24 2 3 4 5 6 15 1 cdleme0aa KHLWHRASAVB
25 22 19 23 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQVB
26 1 3 latjcl KLatRBVBR˙VB
27 18 21 25 26 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙VB
28 simp3 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQPQ
29 simp2l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQRA¬R˙W
30 simp2r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQSA¬S˙W
31 1 2 3 4 5 6 15 cdleme42c KHLWHRA¬R˙WSA¬S˙W¬R˙V˙W
32 22 29 30 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQ¬R˙V˙W
33 28 32 jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQPQ¬R˙V˙W
34 1 2 3 4 5 6 15 cdleme42d KHLWHRA¬R˙WSA¬S˙WR˙R˙V˙W=R˙V
35 22 29 30 34 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙R˙V˙W=R˙V
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme42b KHLWHPA¬P˙WQA¬Q˙WR˙VBPQ¬R˙V˙WRA¬R˙WR˙R˙V˙W=R˙VFR˙V=R/sN˙R˙V˙W
37 16 27 33 29 35 36 syl122anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQFR˙V=R/sN˙R˙V˙W