Metamath Proof Explorer


Theorem cdleme43fsv1snlem

Description: Value of [_ R / s ]_ N when R .<_ ( P .\/ Q ) . (Contributed by NM, 30-Mar-2013)

Ref Expression
Hypotheses cdlemefs32.b B=BaseK
cdlemefs32.l ˙=K
cdlemefs32.j ˙=joinK
cdlemefs32.m ˙=meetK
cdlemefs32.a A=AtomsK
cdlemefs32.h H=LHypK
cdlemefs32.u U=P˙Q˙W
cdlemefs32.d D=t˙U˙Q˙P˙t˙W
cdlemefs32.e E=P˙Q˙D˙s˙t˙W
cdlemefs32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
cdlemefs32.n N=ifs˙P˙QIC
cdleme43fs.y Y=S˙U˙Q˙P˙S˙W
cdleme43fs.z Z=P˙Q˙Y˙R˙S˙W
cdleme43fsa1.v V=P˙Q˙D˙R˙t˙W
cdleme43fsa1.x X=ιyB|tA¬t˙W¬t˙P˙Qy=V
Assertion cdleme43fsv1snlem KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR/sN=Z

Proof

Step Hyp Ref Expression
1 cdlemefs32.b B=BaseK
2 cdlemefs32.l ˙=K
3 cdlemefs32.j ˙=joinK
4 cdlemefs32.m ˙=meetK
5 cdlemefs32.a A=AtomsK
6 cdlemefs32.h H=LHypK
7 cdlemefs32.u U=P˙Q˙W
8 cdlemefs32.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs32.e E=P˙Q˙D˙s˙t˙W
10 cdlemefs32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
11 cdlemefs32.n N=ifs˙P˙QIC
12 cdleme43fs.y Y=S˙U˙Q˙P˙S˙W
13 cdleme43fs.z Z=P˙Q˙Y˙R˙S˙W
14 cdleme43fsa1.v V=P˙Q˙D˙R˙t˙W
15 cdleme43fsa1.x X=ιyB|tA¬t˙W¬t˙P˙Qy=V
16 simp22l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QRA
17 simp3l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙P˙Q
18 9 10 11 14 15 cdleme31sn1c RAR˙P˙QR/sN=X
19 16 17 18 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR/sN=X
20 1 fvexi BV
21 nfv tKHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q
22 nfra1 ttA¬t˙W¬t˙P˙Qy=V
23 nfcv _tB
24 22 23 nfriota _tιyB|tA¬t˙W¬t˙P˙Qy=V
25 15 24 nfcxfr _tX
26 25 nfeq1 tX=Z
27 26 a1i KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtX=Z
28 15 a1i KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QX=ιyB|tA¬t˙W¬t˙P˙Qy=V
29 eqeq1 V=XV=ZX=Z
30 29 adantl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QV=XV=ZX=Z
31 simpl1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙QKHLWHPA¬P˙WQA¬Q˙W
32 simpl22 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙QRA¬R˙W
33 simprl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙QtA
34 simprrl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙Q¬t˙W
35 33 34 jca KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙QtA¬t˙W
36 simpl23 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙QSA¬S˙W
37 simpl21 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙QPQ
38 simprrr KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙Q¬t˙P˙Q
39 simpl3r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙Q¬S˙P˙Q
40 simpl3l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙QR˙P˙Q
41 38 39 40 3jca KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙Q¬t˙P˙Q¬S˙P˙QR˙P˙Q
42 eqid R˙t˙W=R˙t˙W
43 eqid R˙S˙W=R˙S˙W
44 2 3 4 5 6 7 8 12 42 43 14 13 cdleme21k KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WtA¬t˙WSA¬S˙WPQ¬t˙P˙Q¬S˙P˙QR˙P˙QV=Z
45 31 32 35 36 37 41 44 syl132anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙QV=Z
46 45 ex KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙QV=Z
47 simp1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWHPA¬P˙WQA¬Q˙W
48 simp22r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q¬R˙W
49 simp21 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QPQ
50 1 2 3 4 5 6 7 8 14 15 cdleme25cl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QXB
51 47 16 48 49 17 50 syl122anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QXB
52 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWH
53 simp12 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QPA¬P˙W
54 simp13 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QQA¬Q˙W
55 2 3 5 6 cdlemb2 KHLWHPA¬P˙WQA¬Q˙WPQtA¬t˙W¬t˙P˙Q
56 52 53 54 49 55 syl121anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QtA¬t˙W¬t˙P˙Q
57 21 27 28 30 46 51 56 riotasv3d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QBVX=Z
58 20 57 mpan2 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QX=Z
59 19 58 eqtrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR/sN=Z