Metamath Proof Explorer


Theorem cdlemg12a

Description: TODO: FIX COMMENT. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12.u U=P˙Q˙W
Assertion cdlemg12a KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UP˙U˙GP˙U˙FGP˙U

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12.u U=P˙Q˙W
8 simp1l KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UKHL
9 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UPA
10 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UKHLWH
11 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UGT
12 1 4 5 6 ltrnat KHLWHGTPAGPA
13 10 11 9 12 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UGPA
14 simp1r KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UWH
15 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UPA¬P˙W
16 simp22l KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UQA
17 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UPQ
18 1 2 3 4 5 7 cdleme0a KHLWHPA¬P˙WQAPQUA
19 8 14 15 16 17 18 syl212anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UUA
20 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UP˙UGP˙U
21 1 2 3 4 2llnma3r KHLPAGPAUAP˙UGP˙UP˙U˙GP˙U=U
22 8 9 13 19 20 21 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UP˙U˙GP˙U=U
23 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UFT
24 1 4 5 6 ltrncoat KHLWHFTGTPAFGPA
25 10 23 11 9 24 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UFGPA
26 1 2 4 hlatlej2 KHLFGPAUAU˙FGP˙U
27 8 25 19 26 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UU˙FGP˙U
28 22 27 eqbrtrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙UGP˙UP˙U˙GP˙U˙FGP˙U