| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12.u | ⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) | 
						
							| 8 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  𝐾  ∈  HL ) | 
						
							| 9 |  | simp21l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 10 |  | simp1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | simp31 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 12 | 1 4 5 6 | ltrnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  𝑃  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 13 | 10 11 9 12 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  ( 𝐺 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 14 |  | simp1r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  𝑊  ∈  𝐻 ) | 
						
							| 15 |  | simp21 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 16 |  | simp22l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 17 |  | simp32 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 18 | 1 2 3 4 5 7 | cdleme0a | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑈  ∈  𝐴 ) | 
						
							| 19 | 8 14 15 16 17 18 | syl212anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  𝑈  ∈  𝐴 ) | 
						
							| 20 |  | simp33 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) | 
						
							| 21 | 1 2 3 4 | 2llnma3r | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) )  →  ( ( 𝑃  ∨  𝑈 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) )  =  𝑈 ) | 
						
							| 22 | 8 9 13 19 20 21 | syl131anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  ( ( 𝑃  ∨  𝑈 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) )  =  𝑈 ) | 
						
							| 23 |  | simp23 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 24 | 1 4 5 6 | ltrncoat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑃  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 25 | 10 23 11 9 24 | syl121anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 26 | 1 2 4 | hlatlej2 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  𝑈  ≤  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑈 ) ) | 
						
							| 27 | 8 25 19 26 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  𝑈  ≤  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑈 ) ) | 
						
							| 28 | 22 27 | eqbrtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑈 )  ≠  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) ) )  →  ( ( 𝑃  ∨  𝑈 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ∨  𝑈 ) )  ≤  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑈 ) ) |