| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12.u |  |-  U = ( ( P .\/ Q ) ./\ W ) | 
						
							| 8 |  | simp1l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> K e. HL ) | 
						
							| 9 |  | simp21l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> P e. A ) | 
						
							| 10 |  | simp1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 11 |  | simp31 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> G e. T ) | 
						
							| 12 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A ) | 
						
							| 13 | 10 11 9 12 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> ( G ` P ) e. A ) | 
						
							| 14 |  | simp1r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> W e. H ) | 
						
							| 15 |  | simp21 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 16 |  | simp22l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> Q e. A ) | 
						
							| 17 |  | simp32 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> P =/= Q ) | 
						
							| 18 | 1 2 3 4 5 7 | cdleme0a |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) | 
						
							| 19 | 8 14 15 16 17 18 | syl212anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> U e. A ) | 
						
							| 20 |  | simp33 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) | 
						
							| 21 | 1 2 3 4 | 2llnma3r |  |-  ( ( K e. HL /\ ( P e. A /\ ( G ` P ) e. A /\ U e. A ) /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) -> ( ( P .\/ U ) ./\ ( ( G ` P ) .\/ U ) ) = U ) | 
						
							| 22 | 8 9 13 19 20 21 | syl131anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> ( ( P .\/ U ) ./\ ( ( G ` P ) .\/ U ) ) = U ) | 
						
							| 23 |  | simp23 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> F e. T ) | 
						
							| 24 | 1 4 5 6 | ltrncoat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> ( F ` ( G ` P ) ) e. A ) | 
						
							| 25 | 10 23 11 9 24 | syl121anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> ( F ` ( G ` P ) ) e. A ) | 
						
							| 26 | 1 2 4 | hlatlej2 |  |-  ( ( K e. HL /\ ( F ` ( G ` P ) ) e. A /\ U e. A ) -> U .<_ ( ( F ` ( G ` P ) ) .\/ U ) ) | 
						
							| 27 | 8 25 19 26 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> U .<_ ( ( F ` ( G ` P ) ) .\/ U ) ) | 
						
							| 28 | 22 27 | eqbrtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( P .\/ U ) =/= ( ( G ` P ) .\/ U ) ) ) -> ( ( P .\/ U ) ./\ ( ( G ` P ) .\/ U ) ) .<_ ( ( F ` ( G ` P ) ) .\/ U ) ) |