Description: Utility theorem for swapping P and Q . TODO: fix comment. (Contributed by NM, 11-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemg12.l | |
|
cdlemg12.j | |
||
cdlemg12.m | |
||
cdlemg12.a | |
||
cdlemg12.h | |
||
cdlemg12.t | |
||
cdlemg12b.r | |
||
Assertion | cdlemg17pq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg12.l | |
|
2 | cdlemg12.j | |
|
3 | cdlemg12.m | |
|
4 | cdlemg12.a | |
|
5 | cdlemg12.h | |
|
6 | cdlemg12.t | |
|
7 | cdlemg12b.r | |
|
8 | simp11 | |
|
9 | simp13 | |
|
10 | simp12 | |
|
11 | 8 9 10 | 3jca | |
12 | simp21 | |
|
13 | simp22 | |
|
14 | simp23 | |
|
15 | 14 | necomd | |
16 | 12 13 15 | 3jca | |
17 | simp31 | |
|
18 | 1 4 5 6 | ltrnatneq | |
19 | 8 13 10 9 17 18 | syl131anc | |
20 | simp32 | |
|
21 | simp11l | |
|
22 | simp12l | |
|
23 | simp13l | |
|
24 | 2 4 | hlatjcom | |
25 | 21 22 23 24 | syl3anc | |
26 | 20 25 | breqtrd | |
27 | simp33 | |
|
28 | eqcom | |
|
29 | 28 | anbi2i | |
30 | 29 | rexbii | |
31 | 27 30 | sylnib | |
32 | 19 26 31 | 3jca | |
33 | 11 16 32 | 3jca | |