Metamath Proof Explorer


Theorem cdlemg17pq

Description: Utility theorem for swapping P and Q . TODO: fix comment. (Contributed by NM, 11-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg17pq KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWHQA¬Q˙WPA¬P˙WFTGTQPGQQRG˙Q˙P¬rA¬r˙WQ˙r=P˙r

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWH
9 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rQA¬Q˙W
10 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rPA¬P˙W
11 8 9 10 3jca KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWHQA¬Q˙WPA¬P˙W
12 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFT
13 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGT
14 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rPQ
15 14 necomd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rQP
16 12 13 15 3jca KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFTGTQP
17 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPP
18 1 4 5 6 ltrnatneq KHLWHGTPA¬P˙WQA¬Q˙WGPPGQQ
19 8 13 10 9 17 18 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGQQ
20 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rRG˙P˙Q
21 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rKHL
22 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rPA
23 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rQA
24 2 4 hlatjcom KHLPAQAP˙Q=Q˙P
25 21 22 23 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙Q=Q˙P
26 20 25 breqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rRG˙Q˙P
27 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
28 eqcom P˙r=Q˙rQ˙r=P˙r
29 28 anbi2i ¬r˙WP˙r=Q˙r¬r˙WQ˙r=P˙r
30 29 rexbii rA¬r˙WP˙r=Q˙rrA¬r˙WQ˙r=P˙r
31 27 30 sylnib KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WQ˙r=P˙r
32 19 26 31 3jca KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGQQRG˙Q˙P¬rA¬r˙WQ˙r=P˙r
33 11 16 32 3jca KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWHQA¬Q˙WPA¬P˙WFTGTQPGQQRG˙Q˙P¬rA¬r˙WQ˙r=P˙r