Metamath Proof Explorer


Theorem cdlemg18d

Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg18d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQA

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙W
9 simp21r KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGT
10 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPQ
11 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGPP
12 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rRG˙P˙Q
13 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
14 1 2 3 4 5 6 7 cdlemg17b KHLWHPA¬P˙WQA¬Q˙WGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGP=Q
15 8 9 10 11 12 13 14 syl123anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGP=Q
16 15 fveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGP=FQ
17 16 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP=P˙FQ
18 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFT
19 1 2 3 4 5 6 7 cdlemg17bq KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGQ=P
20 8 18 9 10 11 12 13 19 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rGQ=P
21 20 fveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGQ=FP
22 21 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQ˙FGQ=Q˙FP
23 17 22 oveq12d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQ=P˙FQ˙Q˙FP
24 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rKHLWH
25 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rPA¬P˙W
26 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rQA¬Q˙W
27 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGP˙FGQP˙Q
28 1 2 3 4 5 6 cdlemg11aq KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGQQ
29 24 25 26 18 9 27 28 syl123anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGQQ
30 21 29 eqnetrrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFPQ
31 1 2 3 4 5 6 7 cdlemg17irq KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFGQ=FP
32 8 18 9 10 11 12 13 31 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGQ=FP
33 16 32 oveq12d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFGP˙FGQ=FQ˙FP
34 33 27 eqnetrrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rFQ˙FPP˙Q
35 eqid P˙Q˙W=P˙Q˙W
36 1 2 3 4 5 6 7 35 cdlemg18c KHLWHPA¬P˙WQA¬Q˙WFTPQFPQFQ˙FPP˙QP˙FQ˙Q˙FPA
37 24 25 26 18 10 30 34 36 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FQ˙Q˙FPA
38 23 37 eqeltrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙QFGP˙FGQP˙Q¬rA¬r˙WP˙r=Q˙rP˙FGP˙Q˙FGQA