| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  | 
						
							| 2 |  | cdlemg12.j |  | 
						
							| 3 |  | cdlemg12.m |  | 
						
							| 4 |  | cdlemg12.a |  | 
						
							| 5 |  | cdlemg12.h |  | 
						
							| 6 |  | cdlemg12.t |  | 
						
							| 7 |  | cdlemg12b.r |  | 
						
							| 8 |  | simp1 |  | 
						
							| 9 |  | simp21r |  | 
						
							| 10 |  | simp22 |  | 
						
							| 11 |  | simp23 |  | 
						
							| 12 |  | simp31 |  | 
						
							| 13 |  | simp33 |  | 
						
							| 14 | 1 2 3 4 5 6 7 | cdlemg17b |  | 
						
							| 15 | 8 9 10 11 12 13 14 | syl123anc |  | 
						
							| 16 | 15 | fveq2d |  | 
						
							| 17 | 16 | oveq2d |  | 
						
							| 18 |  | simp21l |  | 
						
							| 19 | 1 2 3 4 5 6 7 | cdlemg17bq |  | 
						
							| 20 | 8 18 9 10 11 12 13 19 | syl133anc |  | 
						
							| 21 | 20 | fveq2d |  | 
						
							| 22 | 21 | oveq2d |  | 
						
							| 23 | 17 22 | oveq12d |  | 
						
							| 24 |  | simp11 |  | 
						
							| 25 |  | simp12 |  | 
						
							| 26 |  | simp13 |  | 
						
							| 27 |  | simp32 |  | 
						
							| 28 | 1 2 3 4 5 6 | cdlemg11aq |  | 
						
							| 29 | 24 25 26 18 9 27 28 | syl123anc |  | 
						
							| 30 | 21 29 | eqnetrrd |  | 
						
							| 31 | 1 2 3 4 5 6 7 | cdlemg17irq |  | 
						
							| 32 | 8 18 9 10 11 12 13 31 | syl133anc |  | 
						
							| 33 | 16 32 | oveq12d |  | 
						
							| 34 | 33 27 | eqnetrrd |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 1 2 3 4 5 6 7 35 | cdlemg18c |  | 
						
							| 37 | 24 25 26 18 10 30 34 36 | syl133anc |  | 
						
							| 38 | 23 37 | eqeltrd |  |