Metamath Proof Explorer


Theorem cdlemg33e

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
cdlemg33.o O=P˙v˙Q˙RG
Assertion cdlemg33e KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 cdlemg33.o O=P˙v˙Q˙RG
10 simp1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙W
11 simp21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rvAv˙W
12 simp23l KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rFT
13 simp3 KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rPQvRFrA¬r˙WP˙r=Q˙r
14 1 2 3 4 5 6 7 8 cdlemg33c0 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙Wz˙P˙v
15 10 11 12 13 14 syl121anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙Wz˙P˙v
16 simp11l KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rKHL
17 hlatl KHLKAtLat
18 16 17 syl KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rKAtLat
19 eqid 0.K=0.K
20 19 4 atn0 KAtLatzAz0.K
21 18 20 sylan KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAz0.K
22 simp22l KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rN=0.K
23 22 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAN=0.K
24 21 23 neeqtrrd KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAzN
25 simp22r KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rO=0.K
26 25 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAO=0.K
27 21 26 neeqtrrd KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAzO
28 24 27 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAzNzO
29 28 biantrurd KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAz˙P˙vzNzOz˙P˙v
30 df-3an zNzOz˙P˙vzNzOz˙P˙v
31 29 30 bitr4di KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAz˙P˙vzNzOz˙P˙v
32 31 anbi2d KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙Wz˙P˙v¬z˙WzNzOz˙P˙v
33 32 rexbidva KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙Wz˙P˙vzA¬z˙WzNzOz˙P˙v
34 15 33 mpbid KHLWHPA¬P˙WQA¬Q˙WvAv˙WN=0.KO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v