Metamath Proof Explorer


Theorem cdlemg8a

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l ˙=K
cdlemg8.j ˙=joinK
cdlemg8.m ˙=meetK
cdlemg8.a A=AtomsK
cdlemg8.h H=LHypK
cdlemg8.t T=LTrnKW
Assertion cdlemg8a KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙=K
2 cdlemg8.j ˙=joinK
3 cdlemg8.m ˙=meetK
4 cdlemg8.a A=AtomsK
5 cdlemg8.h H=LHypK
6 cdlemg8.t T=LTrnKW
7 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PKHLWH
8 simp2r KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQA¬Q˙W
9 eqid 0.K=0.K
10 1 3 9 4 5 lhpmat KHLWHQA¬Q˙WQ˙W=0.K
11 7 8 10 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙W=0.K
12 1 4 5 6 cdlemg6 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PFGQ=Q
13 12 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙FGQ=Q˙Q
14 simp1l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PKHL
15 simp2rl KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQA
16 2 4 hlatjidm KHLQAQ˙Q=Q
17 14 15 16 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙Q=Q
18 13 17 eqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙FGQ=Q
19 18 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙FGQ˙W=Q˙W
20 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PFGP=P
21 20 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PP˙FGP=P˙P
22 simp2ll KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PPA
23 2 4 hlatjidm KHLPAP˙P=P
24 14 22 23 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PP˙P=P
25 21 24 eqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PP˙FGP=P
26 25 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PP˙FGP˙W=P˙W
27 simp2l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PPA¬P˙W
28 1 3 9 4 5 lhpmat KHLWHPA¬P˙WP˙W=0.K
29 7 27 28 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PP˙W=0.K
30 26 29 eqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PP˙FGP˙W=0.K
31 11 19 30 3eqtr4rd KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PP˙FGP˙W=Q˙FGQ˙W