Metamath Proof Explorer


Theorem cdlemj2

Description: Part of proof of Lemma J of Crawley p. 118. Eliminate p . (Contributed by NM, 20-Jun-2013)

Ref Expression
Hypotheses cdlemj.b B = Base K
cdlemj.h H = LHyp K
cdlemj.t T = LTrn K W
cdlemj.r R = trL K W
cdlemj.e E = TEndo K W
Assertion cdlemj2 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h U h = V h

Proof

Step Hyp Ref Expression
1 cdlemj.b B = Base K
2 cdlemj.h H = LHyp K
3 cdlemj.t T = LTrn K W
4 cdlemj.r R = trL K W
5 cdlemj.e E = TEndo K W
6 simpl1 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p Atoms K ¬ p K W K HL W H U E V E U F = V F F T F I B h T
7 simpl2 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p Atoms K ¬ p K W h I B g T g I B
8 simpl3l K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p Atoms K ¬ p K W R F R g
9 simpl3r K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p Atoms K ¬ p K W R g R h
10 simpr K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p Atoms K ¬ p K W p Atoms K ¬ p K W
11 eqid K = K
12 eqid Atoms K = Atoms K
13 1 2 3 4 5 11 12 cdlemj1 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p Atoms K ¬ p K W U h p = V h p
14 6 7 8 9 10 13 syl113anc K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p Atoms K ¬ p K W U h p = V h p
15 14 exp32 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p Atoms K ¬ p K W U h p = V h p
16 15 ralrimiv K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p Atoms K ¬ p K W U h p = V h p
17 simp11 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h K HL W H
18 simp121 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h U E
19 simp133 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h h T
20 2 3 5 tendocl K HL W H U E h T U h T
21 17 18 19 20 syl3anc K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h U h T
22 simp122 K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h V E
23 2 3 5 tendocl K HL W H V E h T V h T
24 17 22 19 23 syl3anc K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h V h T
25 11 12 2 3 ltrneq K HL W H U h T V h T p Atoms K ¬ p K W U h p = V h p U h = V h
26 17 21 24 25 syl3anc K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h p Atoms K ¬ p K W U h p = V h p U h = V h
27 16 26 mpbid K HL W H U E V E U F = V F F T F I B h T h I B g T g I B R F R g R g R h U h = V h