Metamath Proof Explorer


Theorem cdlemk13

Description: Part of proof of Lemma K of Crawley p. 118. Line 13 on p. 119. O , D are k_1, f_1. (Contributed by NM, 1-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B=BaseK
cdlemk1.l ˙=K
cdlemk1.j ˙=joinK
cdlemk1.m ˙=meetK
cdlemk1.a A=AtomsK
cdlemk1.h H=LHypK
cdlemk1.t T=LTrnKW
cdlemk1.r R=trLKW
cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk1.o O=SD
Assertion cdlemk13 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFOP=P˙RD˙NP˙RDF-1

Proof

Step Hyp Ref Expression
1 cdlemk1.b B=BaseK
2 cdlemk1.l ˙=K
3 cdlemk1.j ˙=joinK
4 cdlemk1.m ˙=meetK
5 cdlemk1.a A=AtomsK
6 cdlemk1.h H=LHypK
7 cdlemk1.t T=LTrnKW
8 cdlemk1.r R=trLKW
9 cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk1.o O=SD
11 10 fveq1i OP=SDP
12 1 2 3 5 6 7 8 4 9 cdlemksv2 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFSDP=P˙RD˙NP˙RDF-1
13 11 12 eqtrid KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFOP=P˙RD˙NP˙RDF-1