Metamath Proof Explorer


Theorem cdlemk18-3N

Description: Part of proof of Lemma K of Crawley p. 118. Line 22 on p. 119. N , Y , O , D are k, sigma_2 (p), k_1, f_1. (Contributed by NM, 7-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk3.b B = Base K
cdlemk3.l ˙ = K
cdlemk3.j ˙ = join K
cdlemk3.m ˙ = meet K
cdlemk3.a A = Atoms K
cdlemk3.h H = LHyp K
cdlemk3.t T = LTrn K W
cdlemk3.r R = trL K W
cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
Assertion cdlemk18-3N K HL W H R F = R N F T D T N T R D R F F I B D I B P A ¬ P ˙ W D Y F P = N P

Proof

Step Hyp Ref Expression
1 cdlemk3.b B = Base K
2 cdlemk3.l ˙ = K
3 cdlemk3.j ˙ = join K
4 cdlemk3.m ˙ = meet K
5 cdlemk3.a A = Atoms K
6 cdlemk3.h H = LHyp K
7 cdlemk3.t T = LTrn K W
8 cdlemk3.r R = trL K W
9 cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
11 simp22 K HL W H R F = R N F T D T N T R D R F F I B D I B P A ¬ P ˙ W D T
12 simp21 K HL W H R F = R N F T D T N T R D R F F I B D I B P A ¬ P ˙ W F T
13 eqid S D = S D
14 eqid e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1 = e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1
15 1 2 3 4 5 6 7 8 9 10 13 14 cdlemkuu D T F T D Y F = e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1 F
16 11 12 15 syl2anc K HL W H R F = R N F T D T N T R D R F F I B D I B P A ¬ P ˙ W D Y F = e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1 F
17 16 fveq1d K HL W H R F = R N F T D T N T R D R F F I B D I B P A ¬ P ˙ W D Y F P = e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1 F P
18 1 2 3 4 5 6 7 8 9 13 14 cdlemk18-2N K HL W H R F = R N F T D T N T R D R F F I B D I B P A ¬ P ˙ W N P = e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1 F P
19 17 18 eqtr4d K HL W H R F = R N F T D T N T R D R F F I B D I B P A ¬ P ˙ W D Y F P = N P