Metamath Proof Explorer


Theorem cdlemk21-2N

Description: Part of proof of Lemma K of Crawley p. 118. Lines 26-27, p. 119 for i=0 and j=2. (Contributed by NM, 5-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk2.b B=BaseK
cdlemk2.l ˙=K
cdlemk2.j ˙=joinK
cdlemk2.m ˙=meetK
cdlemk2.a A=AtomsK
cdlemk2.h H=LHypK
cdlemk2.t T=LTrnKW
cdlemk2.r R=trLKW
cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk2.q Q=SC
cdlemk2.v V=dTιkT|kP=P˙Rd˙QP˙RdC-1
Assertion cdlemk21-2N KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WSGP=VGP

Proof

Step Hyp Ref Expression
1 cdlemk2.b B=BaseK
2 cdlemk2.l ˙=K
3 cdlemk2.j ˙=joinK
4 cdlemk2.m ˙=meetK
5 cdlemk2.a A=AtomsK
6 cdlemk2.h H=LHypK
7 cdlemk2.t T=LTrnKW
8 cdlemk2.r R=trLKW
9 cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk2.q Q=SC
11 cdlemk2.v V=dTιkT|kP=P˙Rd˙QP˙RdC-1
12 simp11 KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WKHL
13 simp12 KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WWH
14 12 13 jca KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WKHLWH
15 simp2l1 KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WFT
16 simp2l2 KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WCT
17 simp2l3 KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WNT
18 simp2rl KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WGT
19 17 18 jca KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WNTGT
20 simp33 KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WPA¬P˙W
21 simp13 KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WRF=RN
22 simp322 KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WFIB
23 simp323 KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WCIB
24 simp2rr KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WGIB
25 22 23 24 3jca KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WFIBCIBGIB
26 simp31l KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WRCRF
27 simp31r KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WRGRC
28 simp321 KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WRGRF
29 26 27 28 3jca KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WRCRFRGRCRGRF
30 1 2 3 4 5 6 7 8 9 10 11 cdlemk21N KHLWHFTCTNTGTPA¬P˙WRF=RNFIBCIBGIBRCRFRGRCRGRFSGP=VGP
31 14 15 16 19 20 21 25 29 30 syl332anc KHLWHRF=RNFTCTNTGTGIBRCRFRGRCRGRFFIBCIBPA¬P˙WSGP=VGP