Metamath Proof Explorer


Theorem cdlemk35

Description: Part of proof of Lemma K of Crawley p. 118. cdlemk29-3 with shorter hypotheses. (Contributed by NM, 18-Jul-2013)

Ref Expression
Hypotheses cdlemk4.b B = Base K
cdlemk4.l ˙ = K
cdlemk4.j ˙ = join K
cdlemk4.m ˙ = meet K
cdlemk4.a A = Atoms K
cdlemk4.h H = LHyp K
cdlemk4.t T = LTrn K W
cdlemk4.r R = trL K W
cdlemk4.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk4.y Y = P ˙ R G ˙ Z ˙ R G b -1
cdlemk4.x X = ι z T | b T b I B R b R F R b R G z P = Y
Assertion cdlemk35 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X T

Proof

Step Hyp Ref Expression
1 cdlemk4.b B = Base K
2 cdlemk4.l ˙ = K
3 cdlemk4.j ˙ = join K
4 cdlemk4.m ˙ = meet K
5 cdlemk4.a A = Atoms K
6 cdlemk4.h H = LHyp K
7 cdlemk4.t T = LTrn K W
8 cdlemk4.r R = trL K W
9 cdlemk4.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk4.y Y = P ˙ R G ˙ Z ˙ R G b -1
11 cdlemk4.x X = ι z T | b T b I B R b R F R b R G z P = Y
12 eqid f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1 = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
13 eqid d T , e T ι j T | j P = P ˙ R e ˙ f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1 d P ˙ R e d -1 = d T , e T ι j T | j P = P ˙ R e ˙ f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1 d P ˙ R e d -1
14 eqid ι z T | b T b I B R b R F R b R G z = b d T , e T ι j T | j P = P ˙ R e ˙ f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1 d P ˙ R e d -1 G = ι z T | b T b I B R b R F R b R G z = b d T , e T ι j T | j P = P ˙ R e ˙ f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1 d P ˙ R e d -1 G
15 1 2 3 4 5 6 7 8 12 13 14 cdlemk34 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N ι z T | b T b I B R b R F R b R G z = b d T , e T ι j T | j P = P ˙ R e ˙ f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1 d P ˙ R e d -1 G = ι z T | b T b I B R b R F R b R G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
16 9 oveq1i Z ˙ R G b -1 = P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
17 16 oveq2i P ˙ R G ˙ Z ˙ R G b -1 = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
18 10 17 eqtri Y = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
19 18 eqeq2i z P = Y z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
20 19 imbi2i b I B R b R F R b R G z P = Y b I B R b R F R b R G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
21 20 ralbii b T b I B R b R F R b R G z P = Y b T b I B R b R F R b R G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
22 21 a1i z T b T b I B R b R F R b R G z P = Y b T b I B R b R F R b R G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
23 22 riotabiia ι z T | b T b I B R b R F R b R G z P = Y = ι z T | b T b I B R b R F R b R G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
24 11 23 eqtri X = ι z T | b T b I B R b R F R b R G z P = P ˙ R G ˙ P ˙ R b ˙ N P ˙ R b F -1 ˙ R G b -1
25 15 24 eqtr4di K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N ι z T | b T b I B R b R F R b R G z = b d T , e T ι j T | j P = P ˙ R e ˙ f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1 d P ˙ R e d -1 G = X
26 1 2 3 4 5 6 7 8 12 13 14 cdlemk29-3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N ι z T | b T b I B R b R F R b R G z = b d T , e T ι j T | j P = P ˙ R e ˙ f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1 d P ˙ R e d -1 G T
27 25 26 eqeltrrd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X T