| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk3.b |
|
| 2 |
|
cdlemk3.l |
|
| 3 |
|
cdlemk3.j |
|
| 4 |
|
cdlemk3.m |
|
| 5 |
|
cdlemk3.a |
|
| 6 |
|
cdlemk3.h |
|
| 7 |
|
cdlemk3.t |
|
| 8 |
|
cdlemk3.r |
|
| 9 |
|
cdlemk3.s |
|
| 10 |
|
cdlemk3.u1 |
|
| 11 |
|
cdlemk3.x |
|
| 12 |
|
fveq1 |
|
| 13 |
|
simpll1 |
|
| 14 |
|
simplr1 |
|
| 15 |
|
simpl1 |
|
| 16 |
|
simpl3r |
|
| 17 |
|
simp22l |
|
| 18 |
17
|
adantr |
|
| 19 |
15 16 18
|
3jca |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simp21l |
|
| 22 |
21
|
adantr |
|
| 23 |
|
simpr2 |
|
| 24 |
|
simpl23 |
|
| 25 |
22 23 24
|
3jca |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simpr32 |
|
| 28 |
|
simpr33 |
|
| 29 |
27 28
|
jca |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simp21r |
|
| 32 |
31
|
adantr |
|
| 33 |
|
simp22r |
|
| 34 |
33
|
adantr |
|
| 35 |
|
simpr31 |
|
| 36 |
32 34 35
|
3jca |
|
| 37 |
36
|
adantr |
|
| 38 |
|
simpl3l |
|
| 39 |
38
|
adantr |
|
| 40 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkuel-3 |
|
| 41 |
20 26 30 37 39 40
|
syl113anc |
|
| 42 |
|
simpr |
|
| 43 |
2 5 6 7
|
cdlemd |
|
| 44 |
13 14 41 39 42 43
|
syl311anc |
|
| 45 |
44
|
ex |
|
| 46 |
12 45
|
impbid2 |
|
| 47 |
|
simp1 |
|
| 48 |
|
simp3r |
|
| 49 |
47 48
|
jca |
|
| 50 |
49
|
adantr |
|
| 51 |
32 35 34
|
3jca |
|
| 52 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk32 |
|
| 53 |
50 25 18 29 51 38 52
|
syl123anc |
|
| 54 |
53
|
eqeq2d |
|
| 55 |
46 54
|
bitrd |
|
| 56 |
55
|
3exp2 |
|
| 57 |
56
|
imp31 |
|
| 58 |
57
|
pm5.74d |
|
| 59 |
58
|
ralbidva |
|
| 60 |
59
|
riotabidva |
|
| 61 |
11 60
|
eqtrid |
|