Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdlemk40
Next ⟩
cdlemk40t
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdlemk40
Description:
TODO: fix comment.
(Contributed by
NM
, 31-Jul-2013)
Ref
Expression
Hypotheses
cdlemk40.x
⊢
X
=
ι
z
∈
T
|
φ
cdlemk40.u
⊢
U
=
g
∈
T
⟼
if
F
=
N
g
X
Assertion
cdlemk40
⊢
G
∈
T
→
U
⁡
G
=
if
F
=
N
G
⦋
G
/
g
⦌
X
Proof
Step
Hyp
Ref
Expression
1
cdlemk40.x
⊢
X
=
ι
z
∈
T
|
φ
2
cdlemk40.u
⊢
U
=
g
∈
T
⟼
if
F
=
N
g
X
3
vex
⊢
g
∈
V
4
riotaex
⊢
ι
z
∈
T
|
φ
∈
V
5
1
4
eqeltri
⊢
X
∈
V
6
3
5
ifex
⊢
if
F
=
N
g
X
∈
V
7
6
csbex
⊢
⦋
G
/
g
⦌
if
F
=
N
g
X
∈
V
8
2
fvmpts
⊢
G
∈
T
∧
⦋
G
/
g
⦌
if
F
=
N
g
X
∈
V
→
U
⁡
G
=
⦋
G
/
g
⦌
if
F
=
N
g
X
9
7
8
mpan2
⊢
G
∈
T
→
U
⁡
G
=
⦋
G
/
g
⦌
if
F
=
N
g
X
10
csbif
⊢
⦋
G
/
g
⦌
if
F
=
N
g
X
=
if
[
˙
G
/
g
]
˙
F
=
N
⦋
G
/
g
⦌
g
⦋
G
/
g
⦌
X
11
sbcg
⊢
G
∈
T
→
[
˙
G
/
g
]
˙
F
=
N
↔
F
=
N
12
csbvarg
⊢
G
∈
T
→
⦋
G
/
g
⦌
g
=
G
13
11
12
ifbieq1d
⊢
G
∈
T
→
if
[
˙
G
/
g
]
˙
F
=
N
⦋
G
/
g
⦌
g
⦋
G
/
g
⦌
X
=
if
F
=
N
G
⦋
G
/
g
⦌
X
14
10
13
syl5eq
⊢
G
∈
T
→
⦋
G
/
g
⦌
if
F
=
N
g
X
=
if
F
=
N
G
⦋
G
/
g
⦌
X
15
9
14
eqtrd
⊢
G
∈
T
→
U
⁡
G
=
if
F
=
N
G
⦋
G
/
g
⦌
X