Metamath Proof Explorer


Theorem cdlemk40

Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk40.x X=ιzT|φ
cdlemk40.u U=gTifF=NgX
Assertion cdlemk40 GTUG=ifF=NGG/gX

Proof

Step Hyp Ref Expression
1 cdlemk40.x X=ιzT|φ
2 cdlemk40.u U=gTifF=NgX
3 vex gV
4 riotaex ιzT|φV
5 1 4 eqeltri XV
6 3 5 ifex ifF=NgXV
7 6 csbex G/gifF=NgXV
8 2 fvmpts GTG/gifF=NgXVUG=G/gifF=NgX
9 7 8 mpan2 GTUG=G/gifF=NgX
10 csbif G/gifF=NgX=if[˙G/g]˙F=NG/ggG/gX
11 sbcg GT[˙G/g]˙F=NF=N
12 csbvarg GTG/gg=G
13 11 12 ifbieq1d GTif[˙G/g]˙F=NG/ggG/gX=ifF=NGG/gX
14 10 13 eqtrid GTG/gifF=NgX=ifF=NGG/gX
15 9 14 eqtrd GTUG=ifF=NGG/gX