Metamath Proof Explorer


Theorem cdleml7

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013)

Ref Expression
Hypotheses cdleml6.b B=BaseK
cdleml6.j ˙=joinK
cdleml6.m ˙=meetK
cdleml6.h H=LHypK
cdleml6.t T=LTrnKW
cdleml6.r R=trLKW
cdleml6.p Q=ocKW
cdleml6.z Z=Q˙Rb˙hQ˙Rbsh-1
cdleml6.y Y=Q˙Rg˙Z˙Rgb-1
cdleml6.x X=ιzT|bTbIBRbRshRbRgzQ=Y
cdleml6.u U=gTifsh=hgX
cdleml6.e E=TEndoKW
cdleml6.o 0˙=fTIB
Assertion cdleml7 KHLWHhTsEs0˙Ush=ITh

Proof

Step Hyp Ref Expression
1 cdleml6.b B=BaseK
2 cdleml6.j ˙=joinK
3 cdleml6.m ˙=meetK
4 cdleml6.h H=LHypK
5 cdleml6.t T=LTrnKW
6 cdleml6.r R=trLKW
7 cdleml6.p Q=ocKW
8 cdleml6.z Z=Q˙Rb˙hQ˙Rbsh-1
9 cdleml6.y Y=Q˙Rg˙Z˙Rgb-1
10 cdleml6.x X=ιzT|bTbIBRbRshRbRgzQ=Y
11 cdleml6.u U=gTifsh=hgX
12 cdleml6.e E=TEndoKW
13 cdleml6.o 0˙=fTIB
14 1 2 3 4 5 6 7 8 9 10 11 12 13 cdleml6 KHLWHhTsEs0˙UEUsh=h
15 14 simprd KHLWHhTsEs0˙Ush=h
16 simp1 KHLWHhTsEs0˙KHLWH
17 14 simpld KHLWHhTsEs0˙UE
18 simp3l KHLWHhTsEs0˙sE
19 simp2 KHLWHhTsEs0˙hT
20 4 5 12 tendocoval KHLWHUEsEhTUsh=Ush
21 16 17 18 19 20 syl121anc KHLWHhTsEs0˙Ush=Ush
22 fvresi hTITh=h
23 22 3ad2ant2 KHLWHhTsEs0˙ITh=h
24 15 21 23 3eqtr4d KHLWHhTsEs0˙Ush=ITh