Metamath Proof Explorer


Theorem cevathlem1

Description: Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017)

Ref Expression
Hypotheses cevathlem1.a φABC
cevathlem1.b φDEF
cevathlem1.c φGHK
cevathlem1.d φA0E0C0
cevathlem1.e φAB=CDEF=AGCH=EK
Assertion cevathlem1 φBFH=DGK

Proof

Step Hyp Ref Expression
1 cevathlem1.a φABC
2 cevathlem1.b φDEF
3 cevathlem1.c φGHK
4 cevathlem1.d φA0E0C0
5 cevathlem1.e φAB=CDEF=AGCH=EK
6 1 simp2d φB
7 2 simp3d φF
8 6 7 mulcld φBF
9 3 simp2d φH
10 8 9 mulcld φBFH
11 2 simp1d φD
12 3 simp1d φG
13 11 12 mulcld φDG
14 3 simp3d φK
15 13 14 mulcld φDGK
16 1 simp1d φA
17 2 simp2d φE
18 16 17 mulcld φAE
19 1 simp3d φC
20 18 19 mulcld φAEC
21 4 simp1d φA0
22 4 simp2d φE0
23 16 17 21 22 mulne0d φAE0
24 4 simp3d φC0
25 18 19 23 24 mulne0d φAEC0
26 5 simp1d φAB=CD
27 5 simp2d φEF=AG
28 26 27 oveq12d φABEF=CDAG
29 16 6 17 7 mul4d φABEF=AEBF
30 19 11 16 12 mul4d φCDAG=CADG
31 28 29 30 3eqtr3d φAEBF=CADG
32 5 simp3d φCH=EK
33 31 32 oveq12d φAEBFCH=CADGEK
34 18 8 19 9 mul4d φAEBFCH=AECBFH
35 19 16 mulcld φCA
36 35 13 17 14 mul4d φCADGEK=CAEDGK
37 33 34 36 3eqtr3d φAECBFH=CAEDGK
38 16 17 19 mul32d φAEC=ACE
39 16 19 mulcomd φAC=CA
40 39 oveq1d φACE=CAE
41 38 40 eqtrd φAEC=CAE
42 41 oveq1d φAECDGK=CAEDGK
43 37 42 eqtr4d φAECBFH=AECDGK
44 10 15 20 25 43 mulcanad φBFH=DGK