Description: Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cevathlem1.a | |
|
cevathlem1.b | |
||
cevathlem1.c | |
||
cevathlem1.d | |
||
cevathlem1.e | |
||
Assertion | cevathlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cevathlem1.a | |
|
2 | cevathlem1.b | |
|
3 | cevathlem1.c | |
|
4 | cevathlem1.d | |
|
5 | cevathlem1.e | |
|
6 | 1 | simp2d | |
7 | 2 | simp3d | |
8 | 6 7 | mulcld | |
9 | 3 | simp2d | |
10 | 8 9 | mulcld | |
11 | 2 | simp1d | |
12 | 3 | simp1d | |
13 | 11 12 | mulcld | |
14 | 3 | simp3d | |
15 | 13 14 | mulcld | |
16 | 1 | simp1d | |
17 | 2 | simp2d | |
18 | 16 17 | mulcld | |
19 | 1 | simp3d | |
20 | 18 19 | mulcld | |
21 | 4 | simp1d | |
22 | 4 | simp2d | |
23 | 16 17 21 22 | mulne0d | |
24 | 4 | simp3d | |
25 | 18 19 23 24 | mulne0d | |
26 | 5 | simp1d | |
27 | 5 | simp2d | |
28 | 26 27 | oveq12d | |
29 | 16 6 17 7 | mul4d | |
30 | 19 11 16 12 | mul4d | |
31 | 28 29 30 | 3eqtr3d | |
32 | 5 | simp3d | |
33 | 31 32 | oveq12d | |
34 | 18 8 19 9 | mul4d | |
35 | 19 16 | mulcld | |
36 | 35 13 17 14 | mul4d | |
37 | 33 34 36 | 3eqtr3d | |
38 | 16 17 19 | mul32d | |
39 | 16 19 | mulcomd | |
40 | 39 | oveq1d | |
41 | 38 40 | eqtrd | |
42 | 41 | oveq1d | |
43 | 37 42 | eqtr4d | |
44 | 10 15 20 25 43 | mulcanad | |