Metamath Proof Explorer


Theorem cevathlem2

Description: Ceva's theorem second lemma. Relate (doubled) areas of triangles C A O and A B O with of segments B D and D C . (Contributed by Saveliy Skresanov, 24-Sep-2017)

Ref Expression
Hypotheses cevath.sigar G=x,yxy
cevath.a φABC
cevath.b φFDE
cevath.c φO
cevath.d φAOGDO=0BOGEO=0COGFO=0
cevath.e φAFGBF=0BDGCD=0CEGAE=0
cevath.f φAOGBO0BOGCO0COGAO0
Assertion cevathlem2 φCOGAOBD=AOGBODC

Proof

Step Hyp Ref Expression
1 cevath.sigar G=x,yxy
2 cevath.a φABC
3 cevath.b φFDE
4 cevath.c φO
5 cevath.d φAOGDO=0BOGEO=0COGFO=0
6 cevath.e φAFGBF=0BDGCD=0CEGAE=0
7 cevath.f φAOGBO0BOGCO0COGAO0
8 3 simp2d φD
9 2 simp1d φA
10 2 simp2d φB
11 8 9 10 3jca φDAB
12 9 4 subcld φAO
13 8 4 subcld φDO
14 12 13 jca φAODO
15 5 simp1d φAOGDO=0
16 1 14 15 sigariz φDOGAO=0
17 4 16 jca φODOGAO=0
18 1 11 17 sigaradd φABGDBOBGDB=ABGOB
19 1 sigarperm BAOBOGAO=ABGOB
20 10 9 4 19 syl3anc φBOGAO=ABGOB
21 18 20 eqtr4d φABGDBOBGDB=BOGAO
22 21 oveq1d φABGDBOBGDBCD=BOGAOCD
23 9 10 subcld φAB
24 8 10 subcld φDB
25 23 24 jca φABDB
26 1 25 sigarimcd φABGDB
27 4 10 subcld φOB
28 27 24 jca φOBDB
29 1 28 sigarimcd φOBGDB
30 2 simp3d φC
31 30 8 subcld φCD
32 26 29 31 subdird φABGDBOBGDBCD=ABGDBCDOBGDBCD
33 22 32 eqtr3d φBOGAOCD=ABGDBCDOBGDBCD
34 10 30 9 3jca φBCA
35 6 simp2d φBDGCD=0
36 8 35 jca φDBDGCD=0
37 1 34 36 sharhght φABGDBCD=ACGDCBD
38 10 30 4 3jca φBCO
39 1 38 36 sharhght φOBGDBCD=OCGDCBD
40 37 39 oveq12d φABGDBCDOBGDBCD=ACGDCBDOCGDCBD
41 9 30 subcld φAC
42 8 30 subcld φDC
43 1 sigarim ACDCACGDC
44 41 42 43 syl2anc φACGDC
45 44 recnd φACGDC
46 4 30 subcld φOC
47 46 42 jca φOCDC
48 1 47 sigarimcd φOCGDC
49 10 8 subcld φBD
50 45 48 49 subdird φACGDCOCGDCBD=ACGDCBDOCGDCBD
51 8 9 30 3jca φDAC
52 1 51 17 sigaradd φACGDCOCGDC=ACGOC
53 1 sigarperm CAOCOGAO=ACGOC
54 30 9 4 53 syl3anc φCOGAO=ACGOC
55 52 54 eqtr4d φACGDCOCGDC=COGAO
56 55 oveq1d φACGDCOCGDCBD=COGAOBD
57 50 56 eqtr3d φACGDCBDOCGDCBD=COGAOBD
58 33 40 57 3eqtrrd φCOGAOBD=BOGAOCD
59 10 4 subcld φBO
60 1 sigarac BOAOBOGAO=AOGBO
61 59 12 60 syl2anc φBOGAO=AOGBO
62 61 oveq1d φBOGAOCD=AOGBOCD
63 12 59 jca φAOBO
64 1 63 sigarimcd φAOGBO
65 mulneg12 AOGBOCDAOGBOCD=AOGBOCD
66 64 31 65 syl2anc φAOGBOCD=AOGBOCD
67 30 8 negsubdi2d φCD=DC
68 67 oveq2d φAOGBOCD=AOGBODC
69 66 68 eqtrd φAOGBOCD=AOGBODC
70 58 62 69 3eqtrd φCOGAOBD=AOGBODC