Description: Subtracting (double) area of A D C from A B C yields the (double) area of D B C . (Contributed by Saveliy Skresanov, 23-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sharhght.sigar | |
|
sharhght.a | |
||
sharhght.b | |
||
Assertion | sigaradd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sharhght.sigar | |
|
2 | sharhght.a | |
|
3 | sharhght.b | |
|
4 | 2 | simp1d | |
5 | 2 | simp3d | |
6 | 3 | simpld | |
7 | 4 5 6 | nnncan1d | |
8 | 7 | oveq2d | |
9 | 2 | simp2d | |
10 | 9 6 | subcld | |
11 | 4 5 | subcld | |
12 | 4 6 | subcld | |
13 | 1 | sigarms | |
14 | 10 11 12 13 | syl3anc | |
15 | 8 14 | eqtr3d | |
16 | 1 | sigarac | |
17 | 12 10 16 | syl2anc | |
18 | 3 | simprd | |
19 | 17 18 | eqtr3d | |
20 | 19 | negeqd | |
21 | 10 12 | jca | |
22 | 1 21 | sigarimcd | |
23 | 22 | negnegd | |
24 | neg0 | |
|
25 | 24 | a1i | |
26 | 20 23 25 | 3eqtr3d | |
27 | 26 | oveq2d | |
28 | 10 11 | jca | |
29 | 1 28 | sigarimcd | |
30 | 29 | subid1d | |
31 | 15 27 30 | 3eqtrd | |
32 | 9 6 5 | nnncan2d | |
33 | 32 | oveq1d | |
34 | 9 5 | subcld | |
35 | 6 5 | subcld | |
36 | 1 | sigarmf | |
37 | 34 11 35 36 | syl3anc | |
38 | 31 33 37 | 3eqtr2rd | |
39 | 5 6 | subcld | |
40 | 1red | |
|
41 | 40 | renegcld | |
42 | 1 | sigarls | |
43 | 10 39 41 42 | syl3anc | |
44 | 39 | mulm1d | |
45 | 1cnd | |
|
46 | 45 | negcld | |
47 | 46 39 | mulcomd | |
48 | 5 6 | negsubdi2d | |
49 | 44 47 48 | 3eqtr3d | |
50 | 49 | oveq2d | |
51 | 10 39 | jca | |
52 | 1 51 | sigarimcd | |
53 | 52 | mulm1d | |
54 | 52 46 | mulcomd | |
55 | 1 | sigarac | |
56 | 39 10 55 | syl2anc | |
57 | 53 54 56 | 3eqtr4d | |
58 | 43 50 57 | 3eqtr3d | |
59 | 1 | sigarperm | |
60 | 5 9 6 59 | syl3anc | |
61 | 38 58 60 | 3eqtrd | |