Metamath Proof Explorer


Theorem sigaradd

Description: Subtracting (double) area of A D C from A B C yields the (double) area of D B C . (Contributed by Saveliy Skresanov, 23-Sep-2017)

Ref Expression
Hypotheses sharhght.sigar G=x,yxy
sharhght.a φABC
sharhght.b φDADGBD=0
Assertion sigaradd φBCGACDCGAC=BCGDC

Proof

Step Hyp Ref Expression
1 sharhght.sigar G=x,yxy
2 sharhght.a φABC
3 sharhght.b φDADGBD=0
4 2 simp1d φA
5 2 simp3d φC
6 3 simpld φD
7 4 5 6 nnncan1d φA-C-AD=DC
8 7 oveq2d φBDGA-C-AD=BDGDC
9 2 simp2d φB
10 9 6 subcld φBD
11 4 5 subcld φAC
12 4 6 subcld φAD
13 1 sigarms BDACADBDGA-C-AD=BDGACBDGAD
14 10 11 12 13 syl3anc φBDGA-C-AD=BDGACBDGAD
15 8 14 eqtr3d φBDGDC=BDGACBDGAD
16 1 sigarac ADBDADGBD=BDGAD
17 12 10 16 syl2anc φADGBD=BDGAD
18 3 simprd φADGBD=0
19 17 18 eqtr3d φBDGAD=0
20 19 negeqd φBDGAD=0
21 10 12 jca φBDAD
22 1 21 sigarimcd φBDGAD
23 22 negnegd φBDGAD=BDGAD
24 neg0 0=0
25 24 a1i φ0=0
26 20 23 25 3eqtr3d φBDGAD=0
27 26 oveq2d φBDGACBDGAD=BDGAC0
28 10 11 jca φBDAC
29 1 28 sigarimcd φBDGAC
30 29 subid1d φBDGAC0=BDGAC
31 15 27 30 3eqtrd φBDGDC=BDGAC
32 9 6 5 nnncan2d φB-C-DC=BD
33 32 oveq1d φB-C-DCGAC=BDGAC
34 9 5 subcld φBC
35 6 5 subcld φDC
36 1 sigarmf BCACDCB-C-DCGAC=BCGACDCGAC
37 34 11 35 36 syl3anc φB-C-DCGAC=BCGACDCGAC
38 31 33 37 3eqtr2rd φBCGACDCGAC=BDGDC
39 5 6 subcld φCD
40 1red φ1
41 40 renegcld φ1
42 1 sigarls BDCD1BDGCD-1=BDGCD-1
43 10 39 41 42 syl3anc φBDGCD-1=BDGCD-1
44 39 mulm1d φ-1CD=CD
45 1cnd φ1
46 45 negcld φ1
47 46 39 mulcomd φ-1CD=CD-1
48 5 6 negsubdi2d φCD=DC
49 44 47 48 3eqtr3d φCD-1=DC
50 49 oveq2d φBDGCD-1=BDGDC
51 10 39 jca φBDCD
52 1 51 sigarimcd φBDGCD
53 52 mulm1d φ-1BDGCD=BDGCD
54 52 46 mulcomd φBDGCD-1=-1BDGCD
55 1 sigarac CDBDCDGBD=BDGCD
56 39 10 55 syl2anc φCDGBD=BDGCD
57 53 54 56 3eqtr4d φBDGCD-1=CDGBD
58 43 50 57 3eqtr3d φBDGDC=CDGBD
59 1 sigarperm CBDCDGBD=BCGDC
60 5 9 6 59 syl3anc φCDGBD=BCGDC
61 38 58 60 3eqtrd φBCGACDCGAC=BCGDC