Metamath Proof Explorer


Theorem cfval

Description: Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number A is the cardinality (size) of the smallest unbounded subset y of the ordinal number. Unbounded means that for every member of A , there is a member of y that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion cfval AOncfA=x|yx=cardyyAzAwyzw

Proof

Step Hyp Ref Expression
1 cflem AOnxyx=cardyyAzAwyzw
2 intexab xyx=cardyyAzAwyzwx|yx=cardyyAzAwyzwV
3 1 2 sylib AOnx|yx=cardyyAzAwyzwV
4 sseq2 v=AyvyA
5 raleq v=AzvwyzwzAwyzw
6 4 5 anbi12d v=AyvzvwyzwyAzAwyzw
7 6 anbi2d v=Ax=cardyyvzvwyzwx=cardyyAzAwyzw
8 7 exbidv v=Ayx=cardyyvzvwyzwyx=cardyyAzAwyzw
9 8 abbidv v=Ax|yx=cardyyvzvwyzw=x|yx=cardyyAzAwyzw
10 9 inteqd v=Ax|yx=cardyyvzvwyzw=x|yx=cardyyAzAwyzw
11 df-cf cf=vOnx|yx=cardyyvzvwyzw
12 10 11 fvmptg AOnx|yx=cardyyAzAwyzwVcfA=x|yx=cardyyAzAwyzw
13 3 12 mpdan AOncfA=x|yx=cardyyAzAwyzw