Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Geometry in the Euclidean space
Properties relating betweenness and congruence
cgr3permute1
Next ⟩
cgr3permute2
Metamath Proof Explorer
Ascii
Unicode
Theorem
cgr3permute1
Description:
Permutation law for three-place congruence.
(Contributed by
Scott Fenton
, 5-Oct-2013)
Ref
Expression
Assertion
cgr3permute1
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
C
Cgr3
D
E
F
↔
A
C
B
Cgr3
D
F
E
Proof
Step
Hyp
Ref
Expression
1
id
⊢
N
∈
ℕ
→
N
∈
ℕ
2
3simpc
⊢
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
3
3simpc
⊢
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
4
cgrcomlr
⊢
N
∈
ℕ
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
B
C
Cgr
E
F
↔
C
B
Cgr
F
E
5
1
2
3
4
syl3an
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
B
C
Cgr
E
F
↔
C
B
Cgr
F
E
6
5
3anbi3d
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
Cgr
D
E
∧
A
C
Cgr
D
F
∧
B
C
Cgr
E
F
↔
A
B
Cgr
D
E
∧
A
C
Cgr
D
F
∧
C
B
Cgr
F
E
7
3ancoma
⊢
A
B
Cgr
D
E
∧
A
C
Cgr
D
F
∧
C
B
Cgr
F
E
↔
A
C
Cgr
D
F
∧
A
B
Cgr
D
E
∧
C
B
Cgr
F
E
8
6
7
bitrdi
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
Cgr
D
E
∧
A
C
Cgr
D
F
∧
B
C
Cgr
E
F
↔
A
C
Cgr
D
F
∧
A
B
Cgr
D
E
∧
C
B
Cgr
F
E
9
brcgr3
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
C
Cgr3
D
E
F
↔
A
B
Cgr
D
E
∧
A
C
Cgr
D
F
∧
B
C
Cgr
E
F
10
biid
⊢
N
∈
ℕ
↔
N
∈
ℕ
11
3ancomb
⊢
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
↔
A
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
12
3ancomb
⊢
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
↔
D
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
13
brcgr3
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
→
A
C
B
Cgr3
D
F
E
↔
A
C
Cgr
D
F
∧
A
B
Cgr
D
E
∧
C
B
Cgr
F
E
14
10
11
12
13
syl3anb
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
C
B
Cgr3
D
F
E
↔
A
C
Cgr
D
F
∧
A
B
Cgr
D
E
∧
C
B
Cgr
F
E
15
8
9
14
3bitr4d
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
C
Cgr3
D
E
F
↔
A
C
B
Cgr3
D
F
E