Metamath Proof Explorer


Theorem chirred

Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of BeltramettiCassinelli p. 166. (Contributed by NM, 16-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chirred A C x C A 𝐶 x A = 0 A =

Proof

Step Hyp Ref Expression
1 eqeq1 A = if A C x C A 𝐶 x A 0 A = 0 if A C x C A 𝐶 x A 0 = 0
2 eqeq1 A = if A C x C A 𝐶 x A 0 A = if A C x C A 𝐶 x A 0 =
3 1 2 orbi12d A = if A C x C A 𝐶 x A 0 A = 0 A = if A C x C A 𝐶 x A 0 = 0 if A C x C A 𝐶 x A 0 =
4 eleq1 A = if A C x C A 𝐶 x A 0 A C if A C x C A 𝐶 x A 0 C
5 nfv x A C
6 nfra1 x x C A 𝐶 x
7 5 6 nfan x A C x C A 𝐶 x
8 nfcv _ x A
9 nfcv _ x 0
10 7 8 9 nfif _ x if A C x C A 𝐶 x A 0
11 10 nfeq2 x A = if A C x C A 𝐶 x A 0
12 breq1 A = if A C x C A 𝐶 x A 0 A 𝐶 x if A C x C A 𝐶 x A 0 𝐶 x
13 11 12 ralbid A = if A C x C A 𝐶 x A 0 x C A 𝐶 x x C if A C x C A 𝐶 x A 0 𝐶 x
14 4 13 anbi12d A = if A C x C A 𝐶 x A 0 A C x C A 𝐶 x if A C x C A 𝐶 x A 0 C x C if A C x C A 𝐶 x A 0 𝐶 x
15 eleq1 0 = if A C x C A 𝐶 x A 0 0 C if A C x C A 𝐶 x A 0 C
16 10 nfeq2 x 0 = if A C x C A 𝐶 x A 0
17 breq1 0 = if A C x C A 𝐶 x A 0 0 𝐶 x if A C x C A 𝐶 x A 0 𝐶 x
18 16 17 ralbid 0 = if A C x C A 𝐶 x A 0 x C 0 𝐶 x x C if A C x C A 𝐶 x A 0 𝐶 x
19 15 18 anbi12d 0 = if A C x C A 𝐶 x A 0 0 C x C 0 𝐶 x if A C x C A 𝐶 x A 0 C x C if A C x C A 𝐶 x A 0 𝐶 x
20 h0elch 0 C
21 cm0 x C 0 𝐶 x
22 21 rgen x C 0 𝐶 x
23 20 22 pm3.2i 0 C x C 0 𝐶 x
24 14 19 23 elimhyp if A C x C A 𝐶 x A 0 C x C if A C x C A 𝐶 x A 0 𝐶 x
25 24 simpli if A C x C A 𝐶 x A 0 C
26 24 simpri x C if A C x C A 𝐶 x A 0 𝐶 x
27 nfcv _ x 𝐶
28 nfcv _ x y
29 10 27 28 nfbr x if A C x C A 𝐶 x A 0 𝐶 y
30 breq2 x = y if A C x C A 𝐶 x A 0 𝐶 x if A C x C A 𝐶 x A 0 𝐶 y
31 29 30 rspc y C x C if A C x C A 𝐶 x A 0 𝐶 x if A C x C A 𝐶 x A 0 𝐶 y
32 26 31 mpi y C if A C x C A 𝐶 x A 0 𝐶 y
33 25 32 chirredi if A C x C A 𝐶 x A 0 = 0 if A C x C A 𝐶 x A 0 =
34 3 33 dedth A C x C A 𝐶 x A = 0 A =